题目内容

有下列四个命题:
①在空间中,若OA∥OA′,OB∥OB′,则∠AOB=∠A′O′B′;
②直角梯形是平面图形;
③{正四棱柱}⊆直平行六面体}⊆{长方体};
④在四面体P-ABC中,PA⊥BC,PB⊥AC,则点A在平面PBC内的射影恰为△PBC的垂心,其中逆否命题为真命题的个数是


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
B
分析:要判断逆否命题是否是真命题,只要判断原命题即可,根据等角定理可以判断第一个命题,根据两条平行直线可以确定一个平面,可以判断第二个命题,根据线面之间的关系,判断第四个命题.
解答:要判断逆否命题是否是真命题,只要判断原命题即可,
在空间中若OA∥OA′,OB∥OB′,
则∠AOB=∠A′O′B′,或这两个角互补,故①不正确;
直角梯形的两个底是平行的,根据两条平行线可以确定一个平面得到直角梯形是平面图形,故②正确;
{正四棱柱}⊆直平行六面体}⊆{长方体},明显不成立,
在四面体P-ABC中,PA⊥BC,PB⊥AC,
根据线面垂直的判定和性质得到
点A在平面PBC内的射影恰为△PBC的垂心,
综上所述有2个命题是真命题,
故选B.
点评:本题考查等角定理,考查线面垂直的判断和性质,考查平面的基本性质及推论,考查六面体的关系,本题是一个概念辨析问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网