题目内容
数列{an},{bn}的通项公式分别是an=n,bn=2n,则数列{an•bn}的前100项的和为( )
分析:利用错位相减法求数列{an•bn}的前100项的和即可得答案.
解答:解:设数列{an•bn}的前100项的和为S100,
则S100=1×2+2×22+3×23+…+100×2100,①
2S100=1×22+2×23+…+99×2100+100×2101,②
①-②得:-S100=1×2+22+23+…+2100-100×2101
=
-100×2101
=2101-2-100×2101
=-99×2101-2,
∴S100=99×2101+2.
故选A.
则S100=1×2+2×22+3×23+…+100×2100,①
2S100=1×22+2×23+…+99×2100+100×2101,②
①-②得:-S100=1×2+22+23+…+2100-100×2101
=
2(1-2100) |
1-2 |
=2101-2-100×2101
=-99×2101-2,
∴S100=99×2101+2.
故选A.
点评:本题考查数列的求和,着重考查错位相减法,属于中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目