ÌâÄ¿ÄÚÈÝ
£¨2012•ÉعضþÄ££©ÔÚÖ±½Ç×ø±êϵxOyÖУ¬¶¯µãPÓ붨µãF£¨1£¬0£©µÄ¾àÀëºÍËüµ½¶¨Ö±Ïßx=2µÄ¾àÀëÖ®±ÈÊÇ
£¬É趯µãPµÄ¹ì¼£ÎªC1£¬QÊǶ¯Ô²C2£ºx2+y2=r2£¨1£¼r£¼2£©ÉÏÒ»µã£®
£¨1£©Ç󶯵ãPµÄ¹ì¼£C1µÄ·½³Ì£¬²¢ËµÃ÷¹ì¼£ÊÇʲôͼÐΣ»
£¨2£©ÉèÇúÏßC1ÉϵÄÈýµãA(x1£¬y1)£¬B(1£¬
)£¬C(x2£¬y2)ÓëµãFµÄ¾àÀë³ÉµÈ²îÊýÁУ¬ÈôÏ߶ÎACµÄ´¹Ö±Æ½·ÖÏßÓëxÖáµÄ½»µãΪT£¬ÇóÖ±ÏßBTµÄбÂÊk£»
£¨3£©ÈôÖ±ÏßPQÓëC1ºÍ¶¯Ô²C2¾ùÖ»ÓÐÒ»¸ö¹«¹²µã£¬ÇóP¡¢QÁ½µãµÄ¾àÀë|PQ|µÄ×î´óÖµ£®
| ||
2 |
£¨1£©Ç󶯵ãPµÄ¹ì¼£C1µÄ·½³Ì£¬²¢ËµÃ÷¹ì¼£ÊÇʲôͼÐΣ»
£¨2£©ÉèÇúÏßC1ÉϵÄÈýµãA(x1£¬y1)£¬B(1£¬
| ||
2 |
£¨3£©ÈôÖ±ÏßPQÓëC1ºÍ¶¯Ô²C2¾ùÖ»ÓÐÒ»¸ö¹«¹²µã£¬ÇóP¡¢QÁ½µãµÄ¾àÀë|PQ|µÄ×î´óÖµ£®
·ÖÎö£º£¨1£©ÓÉÒÑÖª£¬µÃ
=
£¬ÓÉ´ËÄÜÇó³ö¶¯µãPµÄ¹ì¼£C1µÄ·½³ÌºÍ¹ì¼£ÊÇʲôͼÐΣ®
£¨2£©ÓÉÒÑÖª¿ÉµÃ|AF|=
(2-x1)£¬|BF|=
(2-1)£¬|CF|=
(2-x2)£¬ÒòΪ2|BF|=|AF|+|CF|£¬ËùÒÔx1+x2=2£¬¹ÊÏ߶ÎACµÄÖеãΪ(1£¬
)£¬Æ䴹ֱƽ·ÖÏß·½³ÌΪy-
=-
(x-1)£¬ÓÉ´ËÄÜÇó³öÖ±ÏßBTµÄбÂÊ£®
£¨3£©ÉèP£¨x1£¬y1£©¡¢Q£¨x2£¬y2£©£¬Ö±ÏßPQµÄ·½³ÌΪy=kx+m£¬ÒòΪP¼ÈÔÚÍÖÔ²C1ÉÏÓÖÔÚÖ±ÏßPQÉÏ£¬ÓÉ´ËÄÜÇó³öP¡¢QÁ½µãµÄ¾àÀë|PQ|µÄ×î´óÖµ£®
| ||
|2-x| |
| ||
2 |
£¨2£©ÓÉÒÑÖª¿ÉµÃ|AF|=
| ||
2 |
| ||
2 |
| ||
2 |
y1+y2 |
2 |
y1+y2 |
2 |
x1-x2 |
y1-y2 |
£¨3£©ÉèP£¨x1£¬y1£©¡¢Q£¨x2£¬y2£©£¬Ö±ÏßPQµÄ·½³ÌΪy=kx+m£¬ÒòΪP¼ÈÔÚÍÖÔ²C1ÉÏÓÖÔÚÖ±ÏßPQÉÏ£¬ÓÉ´ËÄÜÇó³öP¡¢QÁ½µãµÄ¾àÀë|PQ|µÄ×î´óÖµ£®
½â´ð£º½â£º£¨1£©ÓÉÒÑÖª£¬µÃ
=
£¬¡£¨2·Ö£©£®
½«Á½±ßƽ·½£¬²¢»¯¼òµÃ
+y2=1£¬¡£¨4·Ö£©£®
¹Ê¹ì¼£C1µÄ·½³ÌÊÇ
+y2=1£¬
ËüÊdz¤Öá¡¢¶ÌÖá·Ö±ðΪ2
¡¢2µÄÍÖÔ²¡£¨4·Ö£©£®
£¨2£©ÓÉÒÑÖª¿ÉµÃ|AF|=
(2-x1)£¬|BF|=
(2-1)£¬|CF|=
(2-x2)£¬
ÒòΪ2|BF|=|AF|+|CF|£¬ËùÒÔ
(2-x1)+
(2-x2)=2¡Á
(2-1)£¬
¼´µÃx1+x2=2£¬¢Ù¡£¨5·Ö£©£®
¹ÊÏ߶ÎACµÄÖеãΪ(1£¬
)£¬
Æ䴹ֱƽ·ÖÏß·½³ÌΪy-
=-
(x-1)£¬¢Ú¡£¨6·Ö£©£®
ÒòΪA£¬CÔÚÍÖÔ²ÉÏ£¬¹ÊÓÐ
+y12=1£¬
+y22=1£¬
Á½Ê½Ïà¼õ£¬µÃ£º
+y12-y22=0¢Û
½«¢Ù´úÈë¢Û£¬»¯¼òµÃ-
=
=y1+y2£¬¢Ü¡£¨7·Ö£©£®
½«¢Ü´úÈë¢Ú£¬²¢Áîy=0µÃ£¬x=
£¬
¼´TµÄ×ø±êΪ(
£¬0)£®¡£¨8·Ö£©£®
ËùÒÔkBT=
=
£®¡£¨9·Ö£©£®
£¨3£©ÉèP£¨x1£¬y1£©¡¢Q£¨x2£¬y2£©£¬
Ö±ÏßPQµÄ·½³ÌΪy=kx+m£¬
ÒòΪP¼ÈÔÚÍÖÔ²C1ÉÏÓÖÔÚÖ±ÏßPQÉÏ£¬
´Ó¶øÓÐ
¡à£¨2k2+1£©x2+4kmx+2£¨m2-1£©=0¡£¨10·Ö£©£®
ÓÉÓÚÖ±ÏßPQÓëÍÖÔ²C1ÏàÇУ¬¹Ê¡÷=£¨4km£©2-4¡Á2£¨m2-1£©£¨2k2+1£©=0
´Ó¶ø¿ÉµÃm2=1+2k2£¬x1=-
£¬
ͬÀí£¬ÓÉQ¼ÈÔÚÔ²C2ÉÏÓÖÔÚÖ±ÏßPQÉÏ£¬¿ÉµÃm2=r2£¨1+k2£©£¬x2=-
¡£¨12·Ö£©
¡àk2=
£¬x2-x1=
ËùÒÔ|PQ|2=(x2-x1)2+(y2-y1)2=(1+k2)(x2-x1)2
=
•
=
•
=
=3-r2-
¡Ü3-2
=(
-1)2¡£¨13·Ö£©£®
¼´|PQ|¡Ü
-1£¬µ±ÇÒ½öµ±r2=
ʱȡµÈºÅ£¬
¹ÊP¡¢QÁ½µãµÄ¾àÀë|PQ|µÄ×î´óÖµ
-1£®¡£¨14·Ö£©£®
| ||
|2-x| |
| ||
2 |
½«Á½±ßƽ·½£¬²¢»¯¼òµÃ
x2 |
2 |
¹Ê¹ì¼£C1µÄ·½³ÌÊÇ
x2 |
2 |
ËüÊdz¤Öá¡¢¶ÌÖá·Ö±ðΪ2
2 |
£¨2£©ÓÉÒÑÖª¿ÉµÃ|AF|=
| ||
2 |
| ||
2 |
| ||
2 |
ÒòΪ2|BF|=|AF|+|CF|£¬ËùÒÔ
| ||
2 |
| ||
2 |
| ||
2 |
¼´µÃx1+x2=2£¬¢Ù¡£¨5·Ö£©£®
¹ÊÏ߶ÎACµÄÖеãΪ(1£¬
y1+y2 |
2 |
Æ䴹ֱƽ·ÖÏß·½³ÌΪy-
y1+y2 |
2 |
x1-x2 |
y1-y2 |
ÒòΪA£¬CÔÚÍÖÔ²ÉÏ£¬¹ÊÓÐ
x12 |
2 |
x22 |
2 |
Á½Ê½Ïà¼õ£¬µÃ£º
x12-x22 |
2 |
½«¢Ù´úÈë¢Û£¬»¯¼òµÃ-
x1-x2 |
y1-y2 |
2(y1+y2) |
x1+x2 |
½«¢Ü´úÈë¢Ú£¬²¢Áîy=0µÃ£¬x=
1 |
2 |
¼´TµÄ×ø±êΪ(
1 |
2 |
ËùÒÔkBT=
| ||||
1-
|
2 |
£¨3£©ÉèP£¨x1£¬y1£©¡¢Q£¨x2£¬y2£©£¬
Ö±ÏßPQµÄ·½³ÌΪy=kx+m£¬
ÒòΪP¼ÈÔÚÍÖÔ²C1ÉÏÓÖÔÚÖ±ÏßPQÉÏ£¬
´Ó¶øÓÐ
|
¡à£¨2k2+1£©x2+4kmx+2£¨m2-1£©=0¡£¨10·Ö£©£®
ÓÉÓÚÖ±ÏßPQÓëÍÖÔ²C1ÏàÇУ¬¹Ê¡÷=£¨4km£©2-4¡Á2£¨m2-1£©£¨2k2+1£©=0
´Ó¶ø¿ÉµÃm2=1+2k2£¬x1=-
2k |
m |
ͬÀí£¬ÓÉQ¼ÈÔÚÔ²C2ÉÏÓÖÔÚÖ±ÏßPQÉÏ£¬¿ÉµÃm2=r2£¨1+k2£©£¬x2=-
2k |
m |
¡àk2=
r2-1 |
2-r2 |
k(2-r2) |
m |
ËùÒÔ|PQ|2=(x2-x1)2+(y2-y1)2=(1+k2)(x2-x1)2
=
m2 |
r2 |
k2(2-r2)2 |
m2 |
(2-r2)2 |
r2 |
r2-1 |
2-r2 |
=
(2-r2)(r2-1) |
r2 |
2 |
r2 |
2 |
2 |
¼´|PQ|¡Ü
2 |
2 |
¹ÊP¡¢QÁ½µãµÄ¾àÀë|PQ|µÄ×î´óÖµ
2 |
µãÆÀ£º±¾Ì⿼²éÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÓ¦Ó㬿¼²éÔËËãÇó½âÄÜÁ¦£¬ÍÆÀíÂÛÖ¤ÄÜÁ¦£»¿¼²é»¯¹éÓëת»¯Ë¼Ï룮×ÛºÏÐÔÇ¿£¬ÄѶȴó£¬ÓÐÒ»¶¨µÄ̽Ë÷ÐÔ£¬¶ÔÊýѧ˼άÄÜÁ¦ÒªÇó½Ï¸ß£¬ÊǸ߿¼µÄÖص㣮½âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿