题目内容
某个命题与正整数有关,若当n=k(k∈N*)时该命题成立,那么可推得当n=k+1时该命题也成立,现已知当n=4时该命题不成立,那么可推得( )
分析:本题考察的知识点是数学归纳法,由归纳法的性质,我们由P(n)对n=k成立,则它对n=k+1也成立,由此类推,对n>k的任意整数均成立,结合逆否命题同真同假的原理,当P(n)对n=k不成立时,则它对n=k-1也不成立,由此类推,对n<k的任意正整数均不成立,由此不难得到答案.
解答:解:由题意可知,
P(n)对n=3不成立(否则n=4也成立).
同理可推得P(n)对n=3,n=2,n=1也不成立.
故选D
P(n)对n=3不成立(否则n=4也成立).
同理可推得P(n)对n=3,n=2,n=1也不成立.
故选D
点评:当P(n)对n=k成立,则它对n=k+1也成立,由此类推,对n>k的任意整数均成立;结合逆否命题同真同假的原理,当P(n)对n=k不成立时,则它对n=k-1也不成立,由此类推,对n<k的任意正整数均不成立.
练习册系列答案
相关题目