题目内容

已知定义在R上的单调函数f(x),存在实数x0,使得对于任意实数x1,x2总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立
(1)求x0的值;
(2)若f(x0)=1,且对任意正整数n,有an=
1
f(n)
bn=f(
1
2n
)+1
,记Sn=a1a2+a2a3+…+anan+1,Tn=b1b2+b2b3+…+bnbn+1,求Sn和Tn
(3)若不等式an+1+an+2+…+a2n
4
35
[log
1
2
(x+1)-log
1
2
(9x2-1)+1]
对任意不小于2的正整数n都成立,求x的取值范围.
分析:(1)由题意对于任意实数x1,x2等式恒成立,故可采用赋值法求解;(2)先证明{f(n)}是以1为首项,2为公差的等差数列,由此得an=
1
2n-1
,从而可求Sn,再证{bn}是等比数列从而可求Tn
(3)设F(n)=an+1+an+2+…+a2n证明其单调减,从而有F(n)>F(2)=
12
35
,所以
12
35
4
35
[log
1
2
(x+1)-log
1
2
(9x2-1)+1]
,解不等式,可得x的取值范围.
解答:解:(1)令x1=x2=0,f(0)=f(x0)+2f(0),f(x0)=-f(0)
令x1=1,x2=0,f(x0)=f(x0)+f(1)+f(0),f(1)=-f(0),∴f(x0)=f(1)
∵f(x)单调,∴x0=1
(2)f(1)=1,令x1=n,x2=1,f(n+1)=f(n)+f(1)+f(1)=f(n)+2
∴f(n+1)-f(n)=2(n∈N*),∴{f(n)}是以1为首项,2为公差的等差数列,∴f(n)=2n-1(n∈N*
an=
1
2n-1
Sn=a1a2+a2a3+…+anan+1
=
1
1×3
+
1
3×5
+…+
1
(2n-1)(2n+1)
=
1
2
[1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
]
=
n
2n+1

∵f(1)=f(
1
2
+
1
2
)=f(
1
2
)+f(
1
2
)+f(1)
∴f(
1
2
)=0,b1=f(
1
2
)+1

f(
1
2^
)=f(
1
2n-1
+
1
2n-1
)=f(
1
2n-1
)+f(
1
2n-1
)+f(1)=2f(
1
2n+1
)+1

2bn+1=2f(
1
2n+1
)+2=f(
1
2n
)+1=bn

bn=(
1
2
)n-1
Tn=(
1
2
)0(
1
2
)1+(
1
2
)1(
1
2
)2+…+(
1
2
)n-1(
1
2
)n
=
1
2
+(
1
2
)3+…+(
1
2
)2n-1
=
1
2
[1-(
1
4
)
n
]
1-
1
4
=
2
3
[1-(
1
4
)n]

(3)令F(n)=an+1+an+2+…+a2nF(n+1)-F(n)=a2n+1+a2n+2-an+1=
1
4n+1
+
1
4n+3
-
1
2n+1
>0

∴n≥2,n∈N*时,F(n)>F(n-1)>…>F(2)=
12
35

12
35
4
35
[log
1
2
(x+1)-log
1
2
(9x2-1)+1]

log
1
2
(x+1)-log
1
2
(9x2-1)<2
?
x+1>0
9x2-1>0
x+1
9x2-1
1
4
解得-
5
9
<x<-
1
3
1
3
<x<1
点评:本题考查抽象函数的求值问题,一般采用赋值法解决,求数列的和,关键是求出其通项,再利用相应的求和公式,不等式中的恒成立问题,往往相应借助于函数的单调性解决.综合性较强.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网