题目内容
设函数
满足
且
.
(1)求证
,并求
的取值范围;
(2)证明函数
在
内至少有一个零点;
(3)设
是函数
的两个零点,求
的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032257813698.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032257844584.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032257844570.png)
(1)求证
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032257860368.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032257875378.png)
(2)证明函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032257891409.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032257906488.png)
(3)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032257906364.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032257891409.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032257938404.png)
(1)详见解析,(2)详见解析,(3)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032257953819.png)
试题分析:(1)由等量关系消去C是解题思路,揭示a为正数是解题关键,本题是典型题,实质是三个实数和为零,则最大的数必为正数,最小的数必为负数,中间的数不确定,通常被消去,(2)证明区间内有解首选零点存在定理.连续性不是高中数学考核的知识点,重点考核的是区间端点函数值的符号.要确定区间端点函数值的符号,需恰当选择区间端点,这是应用零点存在定理的难点,本题
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032257969601.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032257984720.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032257984245.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032257984245.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032257938404.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032257938404.png)
试题解析:(1)由题意得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032258047594.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032258062645.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032257844570.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032258094380.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032258109580.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032258125630.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032258140396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032258140705.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032258156612.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032258172674.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032258187838.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032258218630.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032258234549.png)
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032258234367.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032258250560.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032257891409.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032258281462.png)
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032258296374.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032258312740.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032257891409.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032258328426.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032258343187.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032257891409.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032258374469.png)
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032258390798.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240322584061961.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032258421708.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032258437643.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032257953819.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目