题目内容
已知|
|=4,|
|=3,(2
-3
)•(2
+
)=61.
(1)求
与
的夹角θ;
(2)若
=t
+(1-t)
,且
•
=0,求t及|
|
a |
b |
a |
b |
a |
b |
(1)求
a |
b |
(2)若
c |
a |
b |
b |
c |
c |
分析:(1)根据数量积的运算对条件展开运算即可求得向量夹角;
(2)根据
•
=0建立等式,可求出t的值,然后根据模的定义可求出|
|的值.
(2)根据
b |
c |
c |
解答:解 (1)∵|
|=4,|
|=3,(2
-3
)•(2
+
)=61,
∴
•
=-6.---------------(3分)
∴cos θ=
=
=-
,-------------------------------(5分)
又0≤θ≤π,∴θ=
.-------------------------------------(7分)
(2)
•
=
(t
+(1-t)
)=t
•
+(1-t)
2=-15t+9=0
∴t=
--------------------(10分)
∴|
|2=(
+
)2=
,∴|
|=
-----------(14分)
a |
b |
a |
b |
a |
b |
∴
a |
b |
∴cos θ=
| ||||
|
|
-6 |
4×3 |
1 |
2 |
又0≤θ≤π,∴θ=
2π |
3 |
(2)
b |
c |
b |
a |
b |
a |
b |
b |
∴t=
3 |
5 |
∴|
c |
3 |
5 |
a |
2 |
5 |
b |
108 |
25 |
c |
6
| ||
5 |
点评:本题主要考查向量数量积的运算、及向量夹角的求解,同时考查了运算求解的能力,属基础题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目