题目内容

已知双曲
x2
9
-
y2
16
=1,过其右焦点F的直线(斜率存在)交双曲线于P、Q两点,PQ的垂直平分线交x轴于点M,则
|MF|
|PQ|
的值为(  )
分析:依题意,不妨设过其右焦点F的直线的斜率为1,利用双曲线的第二定义可求得可求得|PQ|,继而可求得PQ的垂直平分线方程,令x=0可求得点M的横坐标,从而使问题解决.
解答:解:∵双曲线的方程为
x2
9
-
y2
16
=1,
∴其右焦点F(5,0),不妨设过其右焦点F的直线的斜率为1,
依题意,直线PQ的方程为:y=x-5.
y=x-5
x2
9
-
y2
16
=1
得:7x2+90x-369=0,
设P(x1,y1),Q(x2,y2),则x1,x2为方程7x2+90x-369=0的两根,
∴x1+x2=-
90
7
,y1+y2=(x1-5)+(x2-5)=x1+x2-10=-
160
7

∴线段PQ的中点N(-
45
7
,-
80
7
),
∴PQ的垂直平分线方程为y+
80
7
=-(x+
45
7
),
令y=0得:x=-
125
7
.又右焦点F(5,0),
∴|MF|=5+
125
7
=
160
7
.①
设点P在其准线上的射影为P′,点Q在其准线上的射影为Q′,
∵双曲线的一条渐近线为y=
4
3
x,其斜率k=
4
3
,直线PQ的方程为:y=x-5,其斜率k′=1,
∵k′<k,
∴直线PQ与双曲线的两个交点一个在左支上,另一个在右支上,不妨设点P在左支,点Q在右支,
则由双曲线的第二定义得:
|PF|
|PP′|
=
|PF|
x1-
a2
c
=e=
c
a
=
5
3

∴|PF|=
5
3
x1-
5
3
×
32
5
=
5
3
x1-3,
同理可得|QF|=3-
5
3
x2
∴|PQ|=|QF|-|PF|
=3-
5
3
x2-(
5
3
x1-3)
=6-
5
3
(x1+x2
=6-
5
3
×(-
90
7

=
192
7
.②
|MF|
|PQ|
=
160
7
192
7
=
5
6

故选B.
点评:本题考查双曲线的第二定义的应用,考查直线与圆锥曲线的相交问题,考查韦达定理的应用与直线方程的求法,综合性强,难度大,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网