ÌâÄ¿ÄÚÈÝ

ÒÑÖªº¯Êýf(x)=©Rx-ax2+bx(a>0)ÇÒµ¼Êýf¨F(x)=0.
£¨1£©ÊÔÓú¬ÓÐaµÄʽ×Ó±íʾb£¬²¢Çóf(x)µÄµ¥µ÷Çø¼ä£»
£¨2£©¶ÔÓÚº¯ÊýͼÏóÉϲ»Í¬µÄÁ½µãA(x1,y1)£¬ÇÒx1<x2£¬Èç¹ûÔÚº¯ÊýͼÏñÉÏ´æÔÚµãM(x0,y0)£¨ÆäÖÐx0¡Ê(x1,x2)£©Ê¹µÃµãM´¦µÄÇÐÏßl//AB£¬Ôò³ÆAB´æÔÚ¡°ÏàÒÀÇÐÏß¡±.ÌرðµØ£¬µ±Ê±£¬ÓÖ³ÆAB´æÔÚ¡°ÖÐÖµÏàÒÀÇÐÏß¡±.ÊÔÎÊ£ºÔÚº¯Êýf(x)ÉÏÊÇ·ñ´æÔÚÁ½µãA,BʹµÃËü´æÔÚ¡°ÖÐÖµÏàÒÀÇÐÏß¡±£¿Èô´æÔÚ£¬ÇóA,BµÄ×ø±ê£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ.
½â£º
£¨1£©f¨F(x)=-ax+b£¬f¨F(x)=0£¬¡àb=a-1£¬
f¨F(x)==0 £¬x1=-£¨ÉáÈ¥£©£¬x2=1£¬
¡àº¯Êýf(x)µÄµ¥µ÷µÝÔöÇø¼äΪ(0,1)£¬µ¥µ÷µÝ¼õÇø¼äΪ(1,+¡Þ)¡£
£¨2£© ¼ÙÉè´æÔÚµãMÂú×ãÌõ¼þ,Ôòf¨F(x0)=,ÕûÀíµÃ:=,
Áî=t¡Ê(0,1),ÔòÎÊÌâת»¯Îª·½³Ì:©Rt=Óиù,
Éèg(t)=©Rt-,g¨F(t)=>0,
¡àº¯Êýg(t)Ϊ(0,1)Éϵĵ¥µ÷µÝÔöº¯Êý,ÇÒg(1)=©R1-0=0,¡àg(t)<0,
ËùÒÔ²»´æÔÚtʹ·½³Ì©Rt=³ÉÁ¢,¼´²»´æÔÚµãÂú×ãÌâÒâ¡£
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø