题目内容
已知圆x2+y2+2x-4y+1=0关于直线2ax-by+2=0(a>0,b>0)对称,则+的最小值是
4
6
8
9
A.0<r<2 B.0<r<
C.0<r<2 D.0<r<4
已知圆x2+y2=9与圆x2+y2-4x+4y-1=0关于直线l对称,则直线l的方程为( )
A.4x-4y+1=0 B.x-y=0
C.x+y=0 D.x-y-2=0
已知圆x2+y2+2ax-2ay+2a2-4a=0(0<a≤4)的圆心为C,直线l:y=x+m.
(1)若m=4,求直线l被圆C所截得弦长的最大值;
(2)若直线l是圆心下方的切线,当a在的变化时,求m的取值范围.
已知圆x2+y2-4ax+2ay+20(a-1)=0.
(1)求证对任意实数a,该圆恒过一定点;
(2)若该圆与圆x2+y2=4相切,求a的值
已知圆x2+y2+2x-4y+1=0关于直线2ax-by+2=0(a>0,b>0)对称,
则+的最小值是
A.4 B.6 C.8 D.9