题目内容

已知椭圆的焦点F1(-3,0)、F2(3,0),且与直线x-y+9=0有公共点,求其中长轴最短的椭圆方程.
分析:先设椭圆方程,然后与直线方程联立方程组,再根据该方程组有解即可求出a的最小值,则问题解决.
解答:解:设椭圆方程为
x2
a2
+
y2
a2-9
=1
(a2>9),
x2
a2
+
y2
a2-9
=1
x-y+9=0
得(2a2-9)x2+18a2x+90a2-a4=0,
由题意,a有解,∴△=(18a22-4(2a2-9)(90a2-a4)≥0,
∴a4-54a2+405≥0,∴a2≥45或a2≤9(舍),
∴a2min=45,此时椭圆方程是
x2
45
+
y2
36
=1
点评:本题主要考查由代数方法解决直线与椭圆交点问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网