题目内容

奇函数上为单调递减函数,且,则不等式 的解集为(  )

A.B.
C.D.

D

解析试题分析:∵函数f(x)在(0,+∞)上为单调递减函数,且f(2)=0,∴函数f(x)在(0,2)的函数值为正,在(2,+∞)上的函数值为负.当x>0时,不等式等价于3f(﹣x)﹣2f(x)≤0,又奇函数f(x),所以有f(x)≥0,所以有0<x≤2.同理当x<0时,可解得﹣2≤x<0.综上,不等式的解集为[﹣2,0)∪(0,2].故选D.
考点:1.函数单调性与奇偶性的综合应用; 2.转化的思想方法的运用

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网