题目内容

若定义在区间D上的函数y=f(x)对于区间D上任意x1,x2都有不等式
1
2
[f(x1)+f(x2)]≤f(
x1+x2
2
)
成立,则称函数y=f(x)在区间D上的凸函数.
(I)证明:定义在R上的二次函数f(x)=ax2+bx+c(a<0)是凸函数;
(II)对(I)的函数y=f(x),若|f(1)|≤1,|f(2)|≤2,|f(3)|≤3,求|f(4)|取得最大值时函数y=f(x)的解析式;
(III)定义在R上的任意凸函数y=f(x),当q,p,m,n∈N*且p<m<n<q,p+q=m+n,证明:f(p)+f(q)≤f(m)+f(n).
分析:(I)利用凸函数的定义,验证函数f(x)=ax2+bx+c(a<0)满足不等式
1
2
[f(x1)+f(x2)]≤f(
x1+x2
2
)
成立.
(II)根据已知条件得到a,b,c满足的不等式,将f(4)用f(1),f(2),f(3)表示,从而得到f(4)取最大值时a,b,d 值.
(III)结合凸函数的定义以及梯形的中位线公式得到要证的不等式.
解答:解:(I)证明:对任意x1,x2∈R,当a<0,
有[f(x1)+f(x2)]-2f(
x1+x2
2
)=ax12+bx1+c+ax22+bx2+c-2[a(
x1+x2
2
2+b(
x1+x2
2
)+c]=ax12+ax22-
1
2
a(x12+x22+2x1x2)=
1
2
a(x1-x22             (3分)
∴当a<0时,f(x1)+f(x2)≤2f(
x1+x2
2
),即
f(x1)+f(x2)
2
≤f(
x1+x2
2

当a<0时,函数f(x)是凸函数.
(2)因为|f(1)|≤1,|f(2)|≤2,|f(3)|≤3,
所以
-1≤a+b+c≤1
-2≤4a+2b+c≤2
-3≤9a+3b+c≤3

又f(4)=16a+4b+c
设16a+4b+c=x(a+b+c)+y(4a+2b+c)+z(9a+3b+c)
所以
x+4y+9z=16
x+2y+3z=4
x+y+z=1

解得x=1,y=-3,z=3
所以f(4)=f(1)-3f(2)+3f(3)
所以-16≤f(4)≤16
所以f(4)的最大值为16
a+b+c=1
4a+2b+c=-2
9a+3b+c=3
取得
解得a=4,b=-15,c=12,
(III)因为p<m<n<q,p+q=m+n,y=f(x)为凸函数,
所以f(p)+f(q)≤2f(p+q)=2f(m+n)
f(m)+f(n))≤2f(m+n)
因为y=f(x)为凸函数,
所以f(p)+f(q)≤f(m)+f(n).
点评:本题是一定新定义的题,考查了不等式的性质及二次函数的性质、待定系数法求函数的定义域.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网