题目内容
已知椭圆的两焦点为F1(-2,0),F2(2,0),P为椭圆上的一点,且|F1F2|是|PF1|与|PF2|的等差中项,该椭圆的方程是( )
分析:根据|F1F2|是|PF1|与|PF2|的等差中项,且|F1F2|=2c,|PF1|+|PF2|=2a,就可求出a,b的值,再判断焦点所在坐标轴,就可得到椭圆方程.
解答:解:∵|F1F2|是|PF1|与|PF2|的等差中项,∴2|F1F2|=|PF1|+|PF2|
又∵|F1F2|=2c,|PF1|+|PF2|=2a,∴4c=2a,a=2c
∵椭圆的两焦点为F1(-2,0),F2(2,0),∴c=2,∴a=4,b2=a2-c2=12
∵椭圆的焦点在x轴上,
∴椭圆方程为
+
=1
故选B
又∵|F1F2|=2c,|PF1|+|PF2|=2a,∴4c=2a,a=2c
∵椭圆的两焦点为F1(-2,0),F2(2,0),∴c=2,∴a=4,b2=a2-c2=12
∵椭圆的焦点在x轴上,
∴椭圆方程为
x2 |
16 |
y2 |
12 |
故选B
点评:本题主要考查了应用椭圆的定义以及等差中项的概念求椭圆方程,关键是求a,b的值.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目