题目内容

已知函数f(x)=2msin2x-2
3
msinxcosx+n
,(m>0)的定义域为[0,
π
2
]
,值域为[-5,4].
(1)求m、n的值;
(2)若将函数y=f(x),x∈R的图象按向量
a
平移后关于原点中心对称,求向量
a
的坐标.
分析:(1)先利用辅助角公式进行化简整理,然后讨论m的正负,根据x的范围建立方程组,从而可求出所求;
(2)根据(1)分别求出函数的对称中心,从而可求出向量
a
的坐标.
解答:解:(1)f(x)=-
3
msin2x-mcos2x+m+n=-2msin(2x+
π
6
)
+m+n,
x∈[0,
π
2
]
⇒2x+
π
6
∈[
π
6
6
]
⇒sin(2x+
π
6
)∈[-
1
2
,1]
,(4分)
∵m>0,∴f(x)max=-2m(-
1
2
)+m+n=4
,f(x)min=-m+n=-5
解得m=3,n=-2,
(2)令sin(2x+
π
6
)=0
,解得x=
2
-
π
12
,(k∈Z)

当m=3,n=-2时,f(x)=-6sin(2x+
π
6
)+1
a
=(
2
+
π
12
,-1),k∈Z
点评:本题主要考查了三角函数中的恒等变换应用,以及平面向量坐标表示的应用,同时考查了分类讨论的数学思想和计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网