题目内容

有编号为1,2,3,…,n的n个学生,入坐编号为1,2,3,…n的n个座位.每个学生规定坐一个座位,设学生所坐的座位号与该生的编号不同的学生人数为ξ,已知ξ=2时,共有6种坐法.
(1)求n的值;
(2)求随机变量ξ的概率分布列和数学期望.
分析:(1)解题的关键是ξ=2时,共有6种坐法,写出关于n的表示式,解出未知量,把不合题意的舍去.
(2)学生所坐的座位号与该生的编号不同的学生人数为ξ,由题意知ξ的可能取值是0,2,3,4,当变量是0时表示学生所坐的座位号与该生的编号都相同,当变量是2时表示学生所坐的座位号与该生的编号有2个相同,理解变量对应的事件,写出分布列和期望.
解答:解:(1)∵当ξ=2时,有Cn2种坐法,
∴Cn2=6,
n(n-1)
2
=6

n2-n-12=0,n=4或n=-3(舍去),
∴n=4.

(2)∵学生所坐的座位号与该生的编号不同的学生人数为ξ,
由题意知ξ的可能取值是0,2,3,4,
当变量是0时表示学生所坐的座位号与该生的编号都相同,
当变量是2时表示学生所坐的座位号与该生的编号有2个相同,
当变量是3时表示学生所坐的座位号与该生的编号有1个相同,
当变量是4时表示学生所坐的座位号与该生的编号有0个相同,
P(ξ=0)=
1
A
4
4
=
1
24

P(ξ=2)=
C
2
4
×1
A
4
4
=
6
24
=
1
4

P(ξ=3)=
C
3
4
×2
A
4
4
=
8
24
=
1
3

P(ξ=4)=
9
24
=
3
8

∴ξ的概率分布列为:
精英家教网
Eξ=0×
1
24
+2×
1
4
+3×
1
3
+4×
3
8
=3
点评:培养运用从具体到抽象、从特殊到一般的观点分析问题的能力,充分体现数学的化归思想.启发诱导的同时,训练了学生观察和概括归纳的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网