题目内容
图①是一个正方体的表面展开图,MN和PQ是两条面对角线,请在图(2)的正方体中将MN,PQ画出来,并就这个正方体解答下列各题:
(1)求MN和PQ所成角的大小;
(2)求四面体M—NPQ的体积与正方体的体积之比;
(3)求二面角M—NQ—P的大小。
(Ⅰ)60°(Ⅱ)1:6(Ⅲ)60°
解析:
(1)如图②,作出MN、PQ
∵PQ∥NC,又△MNC为正三角形
∴∠MNC=60°
∴PQ与MN成角为60°
即四面体M—NPQ的体积与正方体的体积之比为1:6
(3)连结MA交PQ于O点,则MO⊥PQ
又NP⊥面PAQM,∴NP⊥MO,则MO⊥面PNQ
过O作OE⊥NQ,连结ME,则ME⊥NQ
∴∠MEO为二面角M—NQ—P的平面角
在Rt△NMQ中,ME·NQ=MN·MQ
设正方体的棱长为a
∴∠MEO=60°
即二面角M—NQ—P的大小为60°。
练习册系列答案
相关题目