题目内容

通过研究学生的学习行为,专家发现,学生的注意力着老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增;中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,设f(t)表示学生注意力随时间t(分钟)的变化规律(f(t)越大,表明学生注意力越集中),经过实验分析得知:f(t)=
-t2+24t+100,0<t≤10
240,10<t≤20
-7t+380,20<t≤40

(1)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?
(2)讲课开始后5分钟与讲课开始后25分钟比较,何时学生的注意力更集中?
(3)一道数学难题,需要讲解24分钟,并且要求学生的注意力至少达到180,那么经过适当安排,教师能否在学生达到所需的状态下讲授完这道题目?
分析:(1)分类讨论:①当0<t≤10时,②当20<t≤40时,分别求出各段上函数的最大值,从而得出讲课开始多少分钟,学生的注意力最集中;
(2)欲比较讲课开始后5分钟与讲课开始后25分钟,何时学生的注意力更集中,只须分别求得函数值f(5)和f(25)比较它们的大小即可;
(3)分两种情形:①当0<t≤10时,②当20<t≤40时,函数值为180对应的t值,则可计算出学生注意力在180以上所持续的时间
即可看出是否经过适当安排,老师可以在学生达到所需要的状态下讲授完这道题.
解答:解:(1)当0<t≤10时,f(t)=-t2+24t+100
=-(t-12)2+244是增函数,且f(10)=240;
当20<t≤40时,f(t)=-7t+380是减函数,
且f(20)=240.
所以,讲课开始10分钟,学生的注意力最集中,能持续10分钟.
(2)f(5)=195,f(25)=205,
故讲课开始25分钟时,学生的注意力比讲课开始后5分钟更集中.
(3)当0<t≤10时,f(t)=-t2+24t+100=180,则t=4;
当20<t≤40时,令f(t)=-7t+380=180,
t≈28.57,则学生注意力在180以上所持续的时间
28.57-4=24.57>24,
所以,经过适当安排,老师可以在学生达到所需要的状态下讲授完这道题.
点评:构造二次函数模型,函数解析式求解是关键,解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网