题目内容

9.在△ABC中,内角A,B,C的对边分别为a,b,c,S是△ABC的面积,bcosC+ccosB=2acosB
(Ⅰ)求B的值
(Ⅱ)设a=8,S=10$\sqrt{3}$,求b的值.

分析 (Ⅰ)由正弦定理化简已知等式可得sinBcosC+sinCcosB=2sinAcosB,整理可求cosB=$\frac{1}{2}$,结合B的范围,即可求得B的值;
(Ⅱ)由已知及三角形面积公式可求c,由余弦定理即可求b的值.

解答 (本题满分12分)
解:(Ⅰ)∵bcosC+ccosB=2acosB
∴sinBcosC+sinCcosB=2sinAcosB,…2分
∴sin(B+C)=2sinAcosB,
∵A+B+C=π,∴sinA=2sinAcosB,
∵sinA≠0,∴cosB=$\frac{1}{2}$,
∵0<B<π
∴B=$\frac{π}{3}$…6分
(Ⅱ)∵a=8,S=10$\sqrt{3}$,
∴S=$\frac{1}{2}acsinB=2\sqrt{3}c=10\sqrt{3}$,…9分
∴c=5
∵B=$\frac{π}{3}$
∴b2=a2+c2-2accosB=64$+25-2×8×5×\frac{1}{2}=49$,
∴b=7…12分.

点评 本题主要考查了正弦定理,余弦定理,三角函数恒等变换的综合应用,属于基本知识的考查.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网