题目内容
【题目】在公园游园活动中,有这样一个游戏项目:甲箱子里装有3个白球和2个黑球,乙箱子里装有1个白球和2个黑球,这些球除颜色外完全相同.每次游戏都从这两个箱子里各随机地摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(1)求在每一次游戏中获奖的概率;
(2)在三次游戏中,记获奖次数为,求的概率分布和数学期望.
【答案】(1);(2)2.1
【解析】
(1)由题意两箱子随机各摸出2个球共有种取法,其中摸出白球不少于2个有三类共种摸法,即可求出(2)所有可能的取值为0,1,2,3,由题意可知是二项分布,写出概率分布及期望即可.
记“在每一次游戏中获奖”为事件
(1)
(2)所有可能的取值为0,1,2,3
=
=
=
=
==2.1
答: 每一次游戏中获奖的概率为,的数学期望为2.1
练习册系列答案
相关题目
【题目】在“新零售”模式的背景下,某大型零售公司咪推广线下分店,计划在市的区开设分店,为了确定在该区开设分店的个数,该公司对该市已开设分店听其他区的数据作了初步处理后得到下列表格.记表示在各区开设分店的个数, 表示这个个分店的年收入之和.
(个) | 2 | 3 | 4 | 5 | 6 |
(百万元) | 2.5 | 3 | 4 | 4.5 | 6 |
(1)该公司已经过初步判断,可用线性回归模型拟合与的关系,求关于的线性回归方程;
(2)假设该公司在区获得的总年利润(单位:百万元)与之间的关系为,请结合(1)中的线性回归方程,估算该公司应在区开设多少个分店时,才能使区平均每个店的年利润最大?
(参考公式: ,其中)