题目内容

已知曲线y=ln(x+2)+
x2
2
+2x+
1
2
在点A处的切线与曲线y=sin(2x+φ),(-
π
2
<φ<
π
2
)
在点B处的切线相同,求φ的值.
k=y′=
1
x+2
+x+2≥2
,当且仅当x+2=
1
x+2
,即x+2=1,x=-1时,取等号…(2分)
又k=y′=2cos(2x+?)≤2,
由题意,k=2,此时切点A(-1,-1),切线l:y=2x+1…(5分)
由2cos(2x+?)=2得cos(2x+?)=1,
∴sin(2x+?)=0,从而B(-
1
2
,0)…(7分)
∴sin(-1+?)=0,-1+?=kπ,k∈Z,
∴?=kπ+1,k∈Z…(9分)
-
π
2
<?<
π
2

∴?=1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网