题目内容
已知命题P:在直角坐标平面内点M(2,1)与点N(sinα,cosα)(α∈R)落在直线x+2y-3=0的两侧;命题Q:函数y=log2(ax2-ax+1)的定义域为R的充要条件是0≤a≤4,以下结论正确的是( )
A、P∧Q为真 | B、¬P∨Q为真 | C、P∧¬Q为真 | D、¬P∧¬Q为真 |
分析:分别判定出p,q 的真假,再根据真值表判断各个选项的正误.
解答:解:将(2,1)代入x+2y-3,可得x+2y-3=1>0,(将sinα,cosα)(α∈R)代入x+2y-3得x+2y-3=sinα+2cosα-3=
sin(α+φ)-3<0,
∴M(2,1)与点N(sinα,cosα)(α∈R)落在直线x+2y-3=0的两侧,∴P为真命题.
若函数y=log2(ax2-ax+1)的定义域为R,则需
,解得0<a<4,又当a=0时也符合,故函数y=log2(ax2-ax+1)的定义域为R的充要条件是0≤a<4,
∴Q 为假命题,¬Q为真命题,
∴P∧Q为真命题,
故选C
5 |
∴M(2,1)与点N(sinα,cosα)(α∈R)落在直线x+2y-3=0的两侧,∴P为真命题.
若函数y=log2(ax2-ax+1)的定义域为R,则需
|
∴Q 为假命题,¬Q为真命题,
∴P∧Q为真命题,
故选C
点评:本题考查复合命题的真假,此类问题一般转化为简单命题的真假,考查逻辑思维能力.
练习册系列答案
相关题目