题目内容

19.在平行四边形形ABCD中,已知AB=8,AD=6,∠BAD=$\frac{2π}{3}$,点E,F分别在边BC,DC上,且BC=3BE,DC=λDF,$\overrightarrow{AE}$•$\overrightarrow{AF}$=16,则λ的值为2.

分析 运用向量的数量积求得$\overrightarrow{AB}$•$\overrightarrow{AD}$,由题意画出图形,把$\overrightarrow{AE}$,$\overrightarrow{AF}$都用含有$\overrightarrow{AB}$,$\overrightarrow{AD}$的式子表示,运用条件$\overrightarrow{AE}$•$\overrightarrow{AF}$=16,展开后化为关于λ的方程,解方程即可得到所求值.

解答 解:$\overrightarrow{AB}$•$\overrightarrow{AD}$=|$\overrightarrow{AB}$|•|$\overrightarrow{AD}$|•cos$\frac{2π}{3}$
=8•6•(-$\frac{1}{2}$)=-24,
$\overrightarrow{AE}$•$\overrightarrow{AF}$=($\overrightarrow{AB}$+$\overrightarrow{BE}$)•($\overrightarrow{AD}$+$\overrightarrow{DF}$)
=($\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{BC}$)•($\overrightarrow{AD}$+$\frac{1}{λ}$$\overrightarrow{DC}$)
=($\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AD}$)•($\overrightarrow{AD}$+$\frac{1}{λ}$$\overrightarrow{AB}$)
=$\frac{1}{3}$$\overrightarrow{AD}$2+$\frac{1}{λ}$$\overrightarrow{AB}$2+(1+$\frac{1}{3λ}$)$\overrightarrow{AB}$•$\overrightarrow{AD}$
=$\frac{1}{3}$•36+$\frac{1}{λ}$•64+(-24)•(1+$\frac{1}{3λ}$)=16,
解得λ=2,
故答案为:2.

点评 本题考查平面向量的数量积运算,考查了向量加法的三角形法则,体现了数学转化思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网