题目内容
若函数
的零点与
的零点之差的绝对值不超过
,则
可以是( )
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234023097447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234023129747.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234023144413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234023097447.png)
A.![]() | B.![]() |
C.![]() | D.![]() |
A
解:∵g(x)=4x+2x-2在R上连续,且g(
)<0,g(
)=2+1-2=1>0.设g(x)=4x+2x-2的零点为x0,则
<x0<
0<x0-
<
∴|x0
|<
又f(x)=4x-1零点为x=
;
f(x)=(x-1)2零点为x=1; f(x)=ex-1零点为x=0;f(x)=ln(x-
)零点为x=
故选A.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234023550303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234023581338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234023550303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234023581338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234023550303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234023550303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234023550303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234023550303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234023550303.png)
f(x)=(x-1)2零点为x=1; f(x)=ex-1零点为x=0;f(x)=ln(x-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234023581338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234023940388.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目