题目内容
若集合P={x|x=3m+1,m∈N},Q={y|y=5n+2,n∈N},则P∩Q为
- A.{z|z=15k-7,k∈N}
- B.{z|z=15k-8,k∈N}
- C.{z|z=15k+8,k∈N}
- D.{z|z=15k+7,k∈N}
B
由于P∩Q,必有3m+1=5n+2即3m=5n+1,所以5n+1是3的倍数,不妨设n=3k-2, 3k-1当 n= 3k- 2时 5n+1= 5(3k-2)+1=15k-9当n=3k-1时5n+1= 5(3k-1)+1=15k-4∴5n+2=15k-8或5n+2=15k-3,后者舍去,∴Z=15k-8
由于P∩Q,必有3m+1=5n+2即3m=5n+1,所以5n+1是3的倍数,不妨设n=3k-2, 3k-1当 n= 3k- 2时 5n+1= 5(3k-2)+1=15k-9当n=3k-1时5n+1= 5(3k-1)+1=15k-4∴5n+2=15k-8或5n+2=15k-3,后者舍去,∴Z=15k-8
练习册系列答案
相关题目