题目内容

已知△ABC的三边a、b、c成等比数列,且cotA+cotC=
4
7
7
,a+c=3.
(1)求cosB;(2)求△ABC的面积.
分析:(1)由cotA+cotC=
4
7
7
sin(A+C)
sinAsinC
=
4
7
7
,由sinAsinC=sin2B,sin(A+C)=sinB,知
sinB
sin2B
=
4
7
7
sinB=
7
4
,由此能求出cosB.
(2)由余弦定理 b2=a2+c2-2accosB,得ac=a2+c2-2ac•
3
4
=(a+c)2-
7
2
ac
,由此能求出△ABC的面积.
解答:解:(1)由cotA+cotC=
4
7
7
sin(A+C)
sinAsinC
=
4
7
7

∵sinAsinC=sin2B,
sin(A+C)=sinB,
sinB
sin2B
=
4
7
7
sinB=
7
4
,…(5分)
由a、b、c成等比数列,
知b2=ac,
且b不是最大边,
cosB=
1-sin2B
=
1-(
7
4
)
2
=
3
4
,…(6分)
(2)由余弦定理 b2=a2+c2-2accosB,
ac=a2+c2-2ac•
3
4
=(a+c)2-
7
2
ac

得ac=2,…(11分)
S△ABC=
1
2
acsinB=
7
4
.…(12分)
点评:本题考查三角形的解法,解题时要认真审题,仔细解答,注意正弦定理和余弦定理的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网