题目内容
【题目】已知圆同时满足下列三个条件:①与轴相切;②在直线上截得弦长为;③圆心在直线上.求圆的方程.
【答案】设所求的圆C与y轴相切,又与直线交于AB,
∵圆心C在直线上,∴圆心C(3a,a),又圆
与y轴相切,∴R=3|a|. 又圆心C到直线y-x=0的距离
在Rt△CBD中,.
∴圆心的坐标C分别为(3,1)和(-3,-1),故所求圆的方程为
或.
【解析】
试题设所求的圆C与y轴相切,又与直线交于AB,由题设知圆心,;再由点到直线的距离公式和勾股定理能够求出a的值,从而得到圆C的方程.
试题解析:设所求的圆C与y轴相切,又与直线交于AB,
∵圆心C在直线x-3y=0上,∴圆心,
又圆C与y轴相切,∴,
又圆心C到直线 y-x=0的距离
在Rt△CBD中,
∴圆心的坐标C分别为(3,1)和(-3,-1),故所求圆的方程为或.
练习册系列答案
相关题目
【题目】某同学在生物研究性学习中,对春季昼夜温差大小与黄豆种子发芽多少之间的关系进行研究,于是他在4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下资料:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
温差 | 10 | 11 | 13 | 12 | 8 |
发芽数/颗 | 23 | 25 | 30 | 26 | 16 |
(1)从这5天中任选2天,求这2天发芽的种子数均不小于25的概率;
(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出关于的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
附:回归直线的斜率和截距的最小二乘估计公式分别为, .