题目内容

3.在边长为4的正方形ABCD内任取一点M,则∠AMB>90°的概率为(  )
A.$\frac{π}{8}$B.1-$\frac{π}{8}$C.$\frac{π}{4}$D.1-$\frac{π}{4}$

分析 画出满足条件的图形,结合图形分析,找出满足条件的点集对应的图形面积,及图形的总面积.

解答 解:如图正方形的边长为4:
图中白色区域是以AB为直径的半圆
当P落在半圆内时,∠APB>90°;
当P落在半圆上时,∠APB=90°;
当P落在半圆外时,∠APB<90°;
故使∠AMB>90°的概率P=$\frac{{S}_{半圆}}{{S}_{正方形}}$=$\frac{\frac{1}{2}×π×{2}^{2}}{16}$=$\frac{π}{8}$.
故选:A.

点评 几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=$\frac{N(A)}{N}$求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网