题目内容
(文科)已知函数![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123035160129251/SYS201310251230351601292028_ST/0.png)
(1)求函数f(x)的最大值与单调递增区间;
(2)求使f(x)≥3成立的x的集合.
【答案】分析:(1)利用三角函数的恒等变换化简函数f(x)的解析式为2+2sin(2x-
),由此求得它的最大值,由 2kπ-
≤2x-
≤2kπ+
,k∈z,求得x的范围,解开得到函数的增区间.
(2)由f(x)≥3可得,sin(2x-
)≥
,故 2kπ+
≥2x-
≥2kπ+
,k∈z,由此求得不等式的解集.
解答:解:(1)∵函数f(x)=
=1+2sin2x+
sin2x=1+1-cos2x+
sin2x
=2+2(
-
)=2+2sin(2x-
).
故当 sin(2x-
)=1时,函数f(x)取得最大值为4.
令 2kπ-
≤2x-
≤2kπ+
,k∈z,求得 kπ-
≤x≤kπ+
,
故函数的增区间为[kπ-
≤xkπ+
],k∈z.
(2)由f(x)≥3可得,sin(2x-
)≥
,
∴2kπ+
≥2x-
≥2kπ+
,k∈z.
解得kπ+
≤x≤kπ+
,
故使f(x)≥3成立的x的集合为{x|kπ+
≤x≤kπ+
,k∈z }.
点评:本题主要考查三角函数的恒等变换及化简求值,复合三角函数的单调性,属于中档题.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123035160129251/SYS201310251230351601292028_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123035160129251/SYS201310251230351601292028_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123035160129251/SYS201310251230351601292028_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123035160129251/SYS201310251230351601292028_DA/3.png)
(2)由f(x)≥3可得,sin(2x-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123035160129251/SYS201310251230351601292028_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123035160129251/SYS201310251230351601292028_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123035160129251/SYS201310251230351601292028_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123035160129251/SYS201310251230351601292028_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123035160129251/SYS201310251230351601292028_DA/8.png)
解答:解:(1)∵函数f(x)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123035160129251/SYS201310251230351601292028_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123035160129251/SYS201310251230351601292028_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123035160129251/SYS201310251230351601292028_DA/11.png)
=2+2(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123035160129251/SYS201310251230351601292028_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123035160129251/SYS201310251230351601292028_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123035160129251/SYS201310251230351601292028_DA/14.png)
故当 sin(2x-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123035160129251/SYS201310251230351601292028_DA/15.png)
令 2kπ-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123035160129251/SYS201310251230351601292028_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123035160129251/SYS201310251230351601292028_DA/17.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123035160129251/SYS201310251230351601292028_DA/18.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123035160129251/SYS201310251230351601292028_DA/19.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123035160129251/SYS201310251230351601292028_DA/20.png)
故函数的增区间为[kπ-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123035160129251/SYS201310251230351601292028_DA/21.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123035160129251/SYS201310251230351601292028_DA/22.png)
(2)由f(x)≥3可得,sin(2x-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123035160129251/SYS201310251230351601292028_DA/23.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123035160129251/SYS201310251230351601292028_DA/24.png)
∴2kπ+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123035160129251/SYS201310251230351601292028_DA/25.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123035160129251/SYS201310251230351601292028_DA/26.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123035160129251/SYS201310251230351601292028_DA/27.png)
解得kπ+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123035160129251/SYS201310251230351601292028_DA/28.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123035160129251/SYS201310251230351601292028_DA/29.png)
故使f(x)≥3成立的x的集合为{x|kπ+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123035160129251/SYS201310251230351601292028_DA/30.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123035160129251/SYS201310251230351601292028_DA/31.png)
点评:本题主要考查三角函数的恒等变换及化简求值,复合三角函数的单调性,属于中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目