题目内容
10.函数y=-x2+6x-1的单调递减区间为[3,+∞).分析 求二次函数y=-x2+6x-1的对称轴,根据二次函数的单调性即可写出其单调递减区间.
解答 解:二次函数y=-x2+6x-1的对称轴为x=3;
∴该函数的单调递减区间为[3,+∞).
故答案为:[3,+∞).
点评 考查二次函数的对称轴,二次函数的单调性及单调区间.
练习册系列答案
相关题目
20.已知定义在R上的函数f(x)都有f(-x)=f(x),且满足f(x+2)=f(x-2).若当x∈(0,2)时,f(x)=lg(x+1),则有( )
A. | f($\frac{7}{2}$)>f(1)>f(-$\frac{3}{2}$) | B. | f(-$\frac{3}{2}$)$>f(1)>f(\frac{7}{2})$ | C. | f(1)$>f(-\frac{3}{2})>f(\frac{7}{2})$ | D. | f(-$\frac{3}{2}$)>f($\frac{7}{2}$)>f(1) |
18.设f(x)=$\left\{\begin{array}{l}{{k}^{2}x+{a}^{2}-k,(x≥0)}\\{{x}^{2}+({a}^{2}+4a)x+(3-a)^{2},(x<0)}\end{array}\right.$,其中a∈R.若对任意的非零实数x1,存在唯一的非零实数x2(x1≠x2),使得f(x1)=f(x2)成立,则k的取值范围为( )
A. | R | B. | [-4,0] | C. | [9,33] | D. | [-33,-9] |
2.已知数列{an}的前n项和为Sn,首项a1=-$\frac{2}{3}$,且满足Sn+$\frac{1}{S_n}+2={a_n}$(n≥2),则S2015等于( )
A. | $-\frac{2013}{2014}$ | B. | $-\frac{2014}{2015}$ | C. | $-\frac{2015}{2016}$ | D. | $-\frac{2016}{2017}$ |
20.李克强总理4月22日(世界读书日前一天)在厦门大学考察时,指出世界读书日虽然只有一天,但我们应该天天读书,这种好习惯会让我们终身受益.
某中学在此期间开展了一系列的读书教育活动.为了解本校学生课外阅读情况,学校随机抽取了100名学生进行调查.右侧是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图.若将日均阅读时间
不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”.
(Ⅰ)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?
(Ⅱ)将频率视为概率,现从该校大量学生中用随机抽样的方法每次抽取1人,共抽取5次,记被抽取的5人中的“读书迷”的人数为X.若每次抽取的结果是相互独立的,求X的数学期望EX和方差DX.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
某中学在此期间开展了一系列的读书教育活动.为了解本校学生课外阅读情况,学校随机抽取了100名学生进行调查.右侧是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图.若将日均阅读时间
不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”.
(Ⅰ)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?
非读书迷 | 读书迷 | 总计 | |
男 | 15 | ||
女 | 45 | ||
总计 |
P(K2≥k1) | 0.100 | 0.050 | 0.010 | 0.001 |
k1 | 2.706 | 3.841 | 6.635 | 10.828 |
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.