题目内容

已知函数f(x)=
1
3
ax3+bx2+cx+d
,其中a,b,c是以d为公差的等差数列,,且a>0,d>0.设x0为f(x)的极小值点,在[1-
2b
a
,0
]上,f′(x)在x1处取得最大值,在x2处取得最小值,将点(x0,f(x0)),(x1,f′(x1)),(x2,f′(x2,f(x2))依次记为A,B,C.
(I)求x0的值;
(II)若△ABC有一边平行于x轴,且面积为,求a,d的值.
分析:(I)先对函数f(x)进行求导,把2b=a+c代入整理.令f‘(x)=0得x=-1或x=-
c
a
,故可根据-
c
a
<x<-1和x>-1时f‘(x)于0的关系,判断函数f(x)的单调性,进而求出函数f(x)的最小值时x的值.
(2)先求出导函数的对称轴,根据对称轴的范围确定导函数的最大值和最小值及取得最值时的x的值,从而确定A,B,C的坐标,再由三角形ABC有一条边平行于x轴知AC平行于x轴,得到a与d的关系,再由三角形ABC的面积为2+
3
和b=a+d,c=a+2d得到d的方程,最后求出a,d的值.
解答:解:(I)解:∵2b=a+c
∴f'(x)=ax2+2bx+x=ax2+(a+c)x+c=(x+1)(ax+c)
令f'(x)=0,得x=-1或x=-
c
a

∵a>0,d>0
∴0<a<b<c
c
a
>1,-
c
a
<-1
当-
c
a
<x<-1时,f‘(x)<0,
当x>-1时,时,f‘(x)>0,
所以f(x)在x=-1处取得最小值即x0=-1
(II)∵f'(x)=ax2+2bx+x(a>0)
∴函数f'(x)的图象的开口向上,对称轴方程为x=-
b
a

由-
b
a
>1知|(1-
2b
a
)-(-
b
a
)|<|0-(-
b
a
)|
∴f'(x)在[1-
2b
a
,0]上的最大值为f'(0)=c,即x1=0.
又由
b
a
>1,知-
b
a
∈[1-
2b
a
,0]
∴当x=-
b
a
时,
f‘(x)取得最小值为f‘(-
b
a
)=-
d2
a
,即x2=-
b
a

∵f(x0)=f(-1)=-
a
3

∴A(-1,-
a
3
),B(0,c),C(-
b
a
,-
d2
a

由三角形ABC有一条边平行于x轴知AC平行于x轴,
所以-
a
3
=-
d2
a
,即a2=3d①
又由三角形ABC的面积为2+
3
1
2
(-1+
b
a
)•(c+
a
3
)=2+
3

利用b=a+d,c=a+2d,得
2
3
d+
d2
=2+
3

联立①②可得d=3,a=3
3
点评:本小题考查了函数的导数,函数的极值的判定,闭区间上二次函数的最值,等差数基础知识的综合应用,考查了应用数形结合的数学思想分析问题解决问题的能力
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网