题目内容
【题目】已知数列各项均为正数, , ,且对任意恒成立,记的前项和为.
(1)若,求的值;
(2)证明:对任意正实数, 成等比数列;
(3)是否存在正实数,使得数列为等比数列.若存在,求出此时和的表达式;若不存在,说明理由.
【答案】(1)(2)见解析(3)存在使数列为等比数列,此时, .
【解析】试题分析:(1)根据, ,且对任意恒成立,代值计算即可.
(2)a1=1,a2=2,且anan+3=an+1an+2对任意n∈N*恒成立,则可得,从而的奇数项和偶数项均构成等比数列,即可证明,
(3)在(2)中令,则数列是首项为3,公比为的等比数列,从而得到, .又数列为等比数列,解得,∴, ,∴求出此时和的表达式.
试题解析:
解:(1)∵,∴,又∵,∴;
(2)由,两式相乘得,
∵,∴,
从而的奇数项和偶数项均构成等比数列,
设公比分别为,则, ,
又∵,∴,即,
设,则,且恒成立,
数列是首项为,公比为的等比数列,问题得证;
(3)在(2)中令,则数列是首项为3,公比为的等比数列,
∴
,
且, , , ,
∵数列为等比数列,∴
即即
解得(舍去),
∴, ,
从而对任意有,
此时, 为常数,满足成等比数列,
当时, ,又,∴,
综上,存在使数列为等比数列,此时, .
【题目】某市高中全体学生参加某项测评,按得分评为两类(评定标准见表1).根据男女学生比例,使用分层抽样的方法随机抽取了10000名学生的得分数据,其中等级为的学生中有40%是男生,等级为的学生中有一半是女生.等级为和的学生统称为类学生,等级为和的学生统称为类学生.整理这10000名学生的得分数据,得到如图2所示的频率分布直方图,
类别 | 得分() | |
表1
(I)已知该市高中学生共20万人,试估计在该项测评中被评为类学生的人数;
(Ⅱ)某5人得分分别为45,50,55,75,85.从这5人中随机选取2人组成甲组,另外3人组成乙组,求“甲、乙两组各有1名类学生”的概率;
(Ⅲ)在这10000名学生中,男生占总数的比例为51%, 类女生占女生总数的比例为, 类男生占男生总数的比例为,判断与的大小.(只需写出结论)