题目内容
已知无穷等比数列{an}各项的和是2,则首项a1的取值范围是
(0,2)∪(2,4)
(0,2)∪(2,4)
.分析:由无穷等比数列{an}的各项和为2得:
=2,|q|<1且q≠0,从而根据q的取值,可得a1的范围.
a1 |
1-q |
解答:解:由题意可得:
=2,|q|<1且q≠0,
∴a1=2(1-q),
∴0<a1<4且a1≠2,
则首项a1的取值范围是(0,2)∪(2,4).
故答案为:(0,2)∪(2,4)
a1 |
1-q |
∴a1=2(1-q),
∴0<a1<4且a1≠2,
则首项a1的取值范围是(0,2)∪(2,4).
故答案为:(0,2)∪(2,4)
点评:本题主要考查了等比数列的前n项和,其中无穷等比数列的各项和是指当|q|<1且q≠0时前n项和的极限,解题的关键是由无穷等比数列的各项和可得前n项和的极限存在,则可得|q|<1且q≠0,这也是考生常会漏掉的知识点.
练习册系列答案
相关题目
已知无穷等比数列{an}的前n项和Sn=
+a(n∈N*),且a是常数,则此无穷等比数列各项的和是( )
1 |
3n |
A、
| ||
B、-
| ||
C、1 | ||
D、-1 |