题目内容

如图,所在平面互相垂直,且,E、F分别为AC、DC的中点.
(1)求证:
(2)求二面角的正弦值.

(1)详见解析;(2) .

解析试题分析:(1)(方法一)过E作EO⊥BC,垂足为O,连OF,由△ABC≌△DBC可证出△EOC≌△FOC,所以∠EOC=∠FOC=,即FO⊥BC,又EO⊥BC,因此BC⊥面EFO,即可证明EF⊥BC.(方法二)由题意,以B为坐标原点,在平面DBC内过B左垂直BC的直线为x轴,BC所在直线为y轴,在平面ABC内过B作垂直BC的直线为z轴,建立如图所示的空间直角坐标系.

易得,所以,因此,从而得;(2) (方法一)在图1中,过O作OG⊥BF,垂足为G,连EG,由平面ABC⊥平面BDC,从而EO⊥平面BDC,从而EO⊥面BDC,又OG⊥BF,由三垂线定理知EG垂直BF,因此∠EGO为二面角E-BF-C的平面角;在△EOC中,EO=EC=BC·cos30°=,由△BGO∽△BFC知,,因此tan∠EGO=,从而sin∠EGO=,即可求出二面角E-BF-C的正弦值.
(方法二)在图2中,平面BFC的一个法向量为,设平面BEF的法向量,又,由 得其中一个,设二面角E-BF-C的大小为,且由题意知为锐角,则,因此sin∠EGO=,即可求出二面角E-BF-C的正弦值.
(1)证明:
(方法一)过E作EO⊥BC,垂足为O,连OF,

由△ABC≌△DBC可证出△EOC≌△FOC,所以∠EOC=∠FOC=,即FO⊥BC,
又EO⊥BC,因此BC⊥面EFO,
又EF面EFO,所以EF⊥BC.
(方法二)由题意,以B为坐标原点,在平面DBC内过B左垂直BC的直线为x轴,BC所在直线为y轴,在平面ABC内过B作垂直BC的直线为z轴,建立如图所示的空间直角坐标系.

易得B(0,0,0),A(0,-1,),D(,-1,0),C(0,2,0),因而,所以,因此,从而,所以.
(2)(方法一)在图1中,过O作OG⊥BF,垂足为G,连EG,由平面ABC⊥平面BDC,从而EO⊥平面BDC,从而EO⊥面BDC,又OG⊥BF,由三垂线定理知EG垂直BF.
因此∠EGO为二面角E-BF-C的平面角;
在△EOC中,EO=EC=BC·cos30°=,由△BGO∽△BFC知,,因此tan∠EGO=,从而sin∠EGO=,即二面角E-BF-C的正弦值为.
(方法二)在图2中,平面BFC的一个法向量为,设平面BEF的法向量,又,由 得其中一个,设二面角E-BF-C的大小为,且由题意知为锐角,则,因此sin∠EGO=,即二面角E-BF-C的正弦值为.
考点:1.线面垂直的判定;2.二面角.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网