题目内容

(本小题13分)已知数列{an}的前n项和Sn = 2an – 3×2n + 4 (nN*)

(1)求数列{an}的通项公式an;(2)设Tn为数列{Sn – 4}的前n项和,试比较Tn与14的大小.

(Ⅰ) an = (n )2nnN*   (Ⅱ) 当n = 1,2时Tn<14.当n≥3时, Tn>14.


解析:

(1)由a1 = S1 = 2a1 – 3×2 + 4得a1 = 2,……1分

由已知,得Sn + 1 Sn = 2 (an + 1an) – (2n + 1 – 2n)  即an + 1 = 2an + 3×2n 两边同除以2n + 1 ∴数列{}是以= 1为首项,为公差的等差数列.

= 1 + (n – 1) × 即an = (n )2nnN*.……6分

(2)∵Sn – 4 = 2an – 3×2n = (3n – 4)·2n.∴Tn = –1×2 + 2·22 + 5·23 + …+ (3n – 4)·2n①2Tn = –1×22 + 2×23 + … + (3n – 7)·2n + (3n – 4)·2n + 1    

    ① – ②得 –Tn = –2 + 3(22 + 23 + …+2n) – (3n – 4)·2n + 1

= –2 + 3× – (3n – 4)·2n + 1 = –14 + (14 – 6n)·2n  ……10分

 Tn = 14 – (14 – 6n)·2n.∵当n = 1,2时,14 – 6n>0

 ∴Tn<14.当n≥3时,14 – 6n>0  ∴Tn>14.……13分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网