ÌâÄ¿ÄÚÈÝ
¼ºÖªµãFΪÅ×ÎïÏßC£ºy2=xµÄ½¹µã£¬Ð±ÂÊΪ1µÄÖ±Ïßl½»Å×ÎïÏßÓÚ²»Í¬Á½µãP£¬Q£®ÒÔFΪԲÐÄ£¬ÒÔFP£¬FQΪ°ë¾¶×÷Ô²£¬·Ö±ð½»xÖḺ°ëÖáÓÚM£¬N£¬Ö±ÏßPM£¬QN½»ÓÚµãT£®
£¨I£©ÅжÏÖ±ÏßPMÓëÅ×ÎïÏßCµÄλÖùØϵ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨II£©Á¬½ÓFT£¬FQ£¬FP£¬¼ÇS1=S¡÷PFT£¬S2=S¡÷QFT£¬S3=S¡÷PQTÉèÖ±ÏßlÔÚyÖáÉϵĽؾàΪm£¬µ±mºÎֵʱ£¬
È¡µÃ×îСֵ£¬²¢Çó³öÈ¡µ½×îСֵʱֱÏßlµÄ·½³Ì£®
£¨I£©ÅжÏÖ±ÏßPMÓëÅ×ÎïÏßCµÄλÖùØϵ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨II£©Á¬½ÓFT£¬FQ£¬FP£¬¼ÇS1=S¡÷PFT£¬S2=S¡÷QFT£¬S3=S¡÷PQTÉèÖ±ÏßlÔÚyÖáÉϵĽؾàΪm£¬µ±mºÎֵʱ£¬
S1S2 | S3 |
·ÖÎö£º£¨I£©Éè³öP£¬QµÄ×ø±ê£¬Çó³öÖ±ÏßPMµÄ·½³Ì£¬´úÈëÅ×ÎïÏß·½³Ì£¬ÀûÓÃÅбðʽ¿ÉµÃ½áÂÛ£»
£¨II£©½«Ö±ÏßPQ£ºy=x+m´úÈëy2=x¿ÉµÃy2-y+m=0£¬¼ÆËãµãFµ½Ö±ÏßPTµÄ¾àÀ룬µãQµ½Ö±ÏßPTµÄ¾àÀ룬´Ó¶ø¿ÉµÃ
=
=
=
£¬Í¬Àí
=
û¾¢¶ù¿ÉµÃ
=
£¬Áît=
£¾0£¬Ôò
=
(t3+
)=f(t)£¬ÀûÓõ¼Êý·¨£¬¼´¿ÉÇó³ö
µÄ×îСֵ£¬´Ó¶ø¿ÉµÃÈ¡µ½×îСֵʱֱÏßlµÄ·½³Ì£®
£¨II£©½«Ö±ÏßPQ£ºy=x+m´úÈëy2=x¿ÉµÃy2-y+m=0£¬¼ÆËãµãFµ½Ö±ÏßPTµÄ¾àÀ룬µãQµ½Ö±ÏßPTµÄ¾àÀ룬´Ó¶ø¿ÉµÃ
S1 |
S3 |
d1 |
d2 |
1+4y12 |
4(y1-y2)2 |
1+4y12 |
4(1-4m) |
S2 |
S3 |
1+4y22 |
4(1-4m) |
S1S2 |
S3 |
16m2-8m+5 | ||
64
|
1-4m |
S1S2 |
S3 |
1 |
64 |
4 |
t |
S1S2 |
S3 |
½â´ð£º½â£º£¨I£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬ÓÉÌâÒâ¼°Å×ÎïÏߵĶ¨ÒåÖª£ºM£¨-x1£¬0£©£¬N£¨-x2£¬0£©£¬
¡àKMP=
=
¡àÖ±ÏßPM£ºy-y1=
(x-x1)£¬¼´x-2y1y+y12=0
´úÈëy2=x¿ÉµÃy2-2y1y+y12=0
¡ß¡÷=4y12-4y12=0
¡àÖ±ÏßPMÓëÅ×ÎïÏßCÏàÇУ»
£¨II£©Ö±ÏßPQ£ºy=x+m´úÈëy2=x¿ÉµÃy2-y+m=0
¡ày1+y2=1£¬y1y2=m
µãFµ½Ö±ÏßPTµÄ¾àÀëd1=
£»µãQµ½Ö±ÏßPTµÄ¾àÀëd2=
=
¡à
=
=
=
£¬Í¬Àí
=
ÓÖÖ±ÏßPMÓëQNµÄ½»µãT(y1y2£¬
)£¬¡àT(m£¬
)
¡àS3=
|PQ|d=
¡à
=
Áît=
£¾0£¬¡à
=
(t3+
)=f(t)
¡ßf¡ä(t)=
(3t2-
)=
¡àf£¨t£©ÔÚ(0£¬
)Éϵ¥µ÷µÝ¼õ£¬ÔÚ(
£¬+¡Þ)Éϵ¥µ÷µÝÔö
¡à
¡Ý
£¬´Ëʱm=
-
£¬¼´Ö±ÏßlµÄ·½³ÌΪy=x+
-
×ÛÉÏ¿ÉÖª£¬
µÄ×îСֵΪ
£¬È¡µ½×îСֵʱֱÏßlµÄ·½³ÌΪy=x+
-
£®
¡àKMP=
y1 |
2x1 |
1 |
2y1 |
¡àÖ±ÏßPM£ºy-y1=
1 |
2y1 |
´úÈëy2=x¿ÉµÃy2-2y1y+y12=0
¡ß¡÷=4y12-4y12=0
¡àÖ±ÏßPMÓëÅ×ÎïÏßCÏàÇУ»
£¨II£©Ö±ÏßPQ£ºy=x+m´úÈëy2=x¿ÉµÃy2-y+m=0
¡ày1+y2=1£¬y1y2=m
µãFµ½Ö±ÏßPTµÄ¾àÀëd1=
|
| ||
|
|x2-2y1y2+y12| | ||
|
(y1-y2)2 | ||
|
¡à
S1 |
S3 |
d1 |
d2 |
1+4y12 |
4(y1-y2)2 |
1+4y12 |
4(1-4m) |
S2 |
S3 |
1+4y22 |
4(1-4m) |
ÓÖÖ±ÏßPMÓëQNµÄ½»µãT(y1y2£¬
y1+y2 |
2 |
1 |
2 |
¡àS3=
1 |
2 |
|y1-y2||1-4m| |
4 |
¡à
S1S2 |
S3 |
16m2-8m+5 | ||
64
|
Áît=
1-4m |
S1S2 |
S3 |
1 |
64 |
4 |
t |
¡ßf¡ä(t)=
1 |
64 |
4 |
t2 |
3t4-4 |
64t2 |
¡àf£¨t£©ÔÚ(0£¬
4 |
| ||
4 |
| ||
¡à
S1S2 |
S3 |
1 |
12 |
4 |
| ||
1 |
4 |
| ||
6 |
1 |
4 |
| ||
6 |
×ÛÉÏ¿ÉÖª£¬
S1S2 |
S3 |
1 |
12 |
4 |
| ||
1 |
4 |
| ||
6 |
µãÆÀ£º±¾Ì⿼²éÖ±ÏßÓëÅ×ÎïÏßµÄλÖùØϵ£¬¿¼²éÈý½ÇÐεÄÃæ»ý£¬¿¼²éµ¼Êý·¨Çóº¯ÊýµÄ×îÖµ£¬½âÌâµÄ¹Ø¼üÊǹ¹½¨º¯Êý¹Øϵʽ£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿