题目内容
【题目】已知二次函数f(x)=x2-(2m+1)x+m.
(1)若方程f(x)=0有两个不等的实根x1,x2,且-1<x1<0<x2<1,求m的取值范围;
(2)若对任意的x∈[1,2],≤2恒成立,求m的取值范围.
【答案】(1)(-,0) (2)[-,+∞)
【解析】
(1)二次函数f(x)=x2-(2m+1)x+m开口向上,方程f(x)=0有两个不等的实根x1,x2,且-1<x1<0<x2<1,找到等价条件,解不等式组即可;
(2)把对任意的x∈[1,2],≤2恒成立,等价转换为对任意的x∈[1,2],x2-(2m+3)x+m≤0恒成立,得到关于m的不等式组,求解即可求得m的取值范围.
(1)由方程f(x)=0有两个不等的实根x1,x2,且-1<x1<0<x2<1,
则,解得-<m<0,
∴m的取值范围是(-,0);
(2)对任意的x∈[1,2],≤2恒成立,即对任意的x∈[1,2],x2-(2m+1)x+m≤2x恒成立,
∴对任意的x∈[1,2],x2-(2m+3)x+m≤0恒成立,
则,解得m≥-,
∴m的取值范围是[-,+∞).
【题目】为调查中国及美国的高中生在“家”、“朋友聚集的地方”、“个人空间”这三个场所中感到最幸福的场所是哪个,从中国某城市的高中生中随机抽取了55人,从美国某城市高中生中随机抽取了45人进行答题。中国高中生的答题情况:选择“家”的高中生的人数占,选择“朋友聚集的地方”的高中生的人数占,选择“个人空间”的高中生的人数占,美国高中生的答题情况:选择“家”的高中生的人数占,选择“朋友聚集的地方”的高中生的人数占,选择“个人空间”的高中生的人数占。
(1)请根据以上调查结果将下面的2X2列联表补充完整,并判断能否有95%的把握认为恋家(在家里感到最幸福)与国别有关;
在家里感到最幸福 | 在其他场所感到最幸福 | 总计 | |
中国高中生 | |||
美国高中生 | |||
总计 |
(2)从被调查的不“恋家”的美国高中生中,用分层抽样的方法随机选出4人接受进一步调查,再从4人中随机选出2人到中国交流学习,求2人中含有在“个人空间”感到最幸福的高中生的概率。
| 0.050 | 0.025 | 0.010 | 0.001 |
3.841 | 5.024 | 6.635 | 10.8 |
附: