题目内容

(2010•龙岩二模)已知f(x)、g(x)都是定义在R上的函数,f'(x)g(x)+f(x)g'(x)<0,f(x)g(x)=ax,f(1)g(1)+f(-1)g(-1)=
5
2
.在区间[-3,0]上随机取一个数x,f(x)g(x)的值介于4到8之间的概率是(  )
分析:根据函数积的导数公式,可知函数f(x)g(x)在R上是减函数,根据f(x)g(x)=ax,f(1)g(1)+f(-1)g(-1)=
5
2
.我们可以求出函数解析式,从而可求出f(x)g(x)的值介于4到8之间时,变量的范围,利用几何概型的概率公式即可求得.
解答:解:由题意,∵f'(x)g(x)+f(x)g'(x)<0,
∴[f(x)g(x)]'<0,
∴函数f(x)g(x)在R上是减函数
∵f(x)g(x)=ax
∴0<a<1
∵f(1)g(1)+f(-1)g(-1)=
5
2

a+
1
a
=
5
2

a=
1
2

∵f(x)g(x)的值介于4到8
∴x∈[-3,-2]
∴在区间[-3,0]上随机取一个数x,f(x)g(x)的值介于4到8之间的概率是P=
-2+3
0+3
=
1
3

故选A.
点评:本题的考点是利用导数确定函数的单调性,主要考查积的导数的运算公式,考查几何概型,解题的关键是确定函数的解析式,利用几何概型求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网