ÌâÄ¿ÄÚÈÝ
9£®ÈôÖ±Ïßy=-x+1ÓëÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÏཻÓÚA£¬BÁ½µã£¬ÇÒÒÔABΪֱ¾¶µÄÔ²¾¹ýµãO£¨ÆäÖÐOΪ×ø±êԵ㣩µ±ÍÖÔ²CµÄÀëÐÄÂÊe$¡Ê[\frac{1}{2}£¬\frac{\sqrt{3}}{2}]$ʱÍÖÔ²CµÄ³¤Ö᳤µÄ×î´óÖµÊÇ£¨¡¡¡¡£©A£® | $\sqrt{10}$ | B£® | $\frac{\sqrt{10}}{2}$ | C£® | 3 | D£® | $\frac{3}{2}$ |
·ÖÎö Éè³öµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÓÉ$\overrightarrow{OA}$¡Í$\overrightarrow{OB}$µÃ³öx1x2+y1y2=0£»ÓÉ$\left\{\begin{array}{l}{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\\{y=-x+1}\end{array}\right.$£¬ÏûÈ¥yµÃ³ö£¨a2+b2£©x2-2a2x+a2£¨1-b2£©=0£»ÀûÓøùÓëϵÊýµÄ¹ØϵµÃx1+x2Óëx1x2£¬Çó³öa¡¢b¡¢cÓëeµÄ¹Øϵ£¬ÔÙÓÉeµÄ·¶Î§Çó³öaµÄÈ¡Öµ·¶Î§£¬´Ó¶øµÃ³ö³¤Ö᳤µÄ×î´óÖµ£®
½â´ð ½â£ºÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
¡ß$\overrightarrow{OA}$¡Í$\overrightarrow{OB}$£¬¡à$\overrightarrow{OA}$•$\overrightarrow{OB}$=0£¬
¼´x1x2+y1y2=0£¬
ÓÉ$\left\{\begin{array}{l}{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\\{y=-x+1}\end{array}\right.$£¬ÏûÈ¥yµÃ£¨a2+b2£©x2-2a2x+a2£¨1-b2£©=0£¬
ÓÉ¡÷=£¨-2a2£©2-4a2£¨a2+b2£©£¨1-b2£©£¾0£¬ÕûÀíµÃa2+b2£¾1£»
¡ßx1+x2=$\frac{{2a}^{2}}{{a}^{2}{+b}^{2}}$£¬x1x2=$\frac{{a}^{2}£¨1{-b}^{2}£©}{{a}^{2}{+b}^{2}}$£¬
¡ày1y2=£¨-x1+1£©£¨-x2+1£©=x1x2-£¨x1+x2£©+1£¬
¡àx1x2+y1y2=0£¬µÃ£º2x1x2-£¨x1+x2£©+1=0£¬
¡à$\frac{{2a}^{2}£¨1{-b}^{2}£©}{{a}^{2}{+b}^{2}}$-$\frac{{2a}^{2}}{{a}^{2}{+b}^{2}}$+1=0£¬
ÕûÀíµÃ£ºa2+b2-2a2b2=0£®
¡àb2=a2-c2=a2-a2e2£¬´úÈëÉÏʽµÃ
2a2=1+$\frac{1}{1{-e}^{2}}$£¬¡àa2=$\frac{1}{2}$£¨1+$\frac{1}{1{-e}^{2}}$£©£¬
¡ß$\frac{1}{2}$¡Üe¡Ü$\frac{\sqrt{3}}{2}$£¬
¡à$\frac{1}{4}$¡Üe2¡Ü$\frac{3}{4}$£¬¡à$\frac{1}{4}$¡Ü1-e2¡Ü$\frac{3}{4}$£¬
¡à$\frac{4}{3}$¡Ü$\frac{1}{1{-e}^{2}}$¡Ü4£¬¡à$\frac{7}{3}$¡Ü1+$\frac{1}{1{-e}^{2}}$¡Ü5£¬
¡à$\frac{7}{6}$¡Üa2¡Ü$\frac{5}{2}$ÊʺÏÌõ¼þa2+b2£¾1£®
Óɴ˵Ã$\frac{\sqrt{42}}{6}$¡Üa¡Ü$\frac{\sqrt{10}}{2}$£¬¡à$\frac{\sqrt{42}}{3}$¡Ü2a¡Ü$\sqrt{10}$£¬
¹Ê³¤Ö᳤µÄ×î´óֵΪ$\sqrt{10}$£®
¹ÊÑ¡£ºA£®
µãÆÀ ±¾Ì⿼²éÁËÖ±ÏßÓëÍÖÔ²±ê×¼·½³ÌµÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁËƽÃæÏòÁ¿ÓëÔ²µÄÓ¦ÓÃÎÊÌ⣬¿¼²éÁ˼ÆËãÄÜÁ¦ÓëÂß¼ÍÆÀíÄÜÁ¦£¬ÊÇ×ÛºÏÐÔÌâÄ¿£®
A£® | $a£¼-\frac{1}{3}$ | B£® | $a£¾-\frac{1}{3}$ | C£® | a£¼-3 | D£® | a£¾-3 |