题目内容
关于平面向量有下列四个命题:①若
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_ST/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_ST/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_ST/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_ST/5.png)
②已知
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_ST/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_ST/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_ST/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_ST/9.png)
③非零向量
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_ST/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_ST/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_ST/12.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_ST/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_ST/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_ST/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_ST/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_ST/17.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_ST/18.png)
④(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_ST/19.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_ST/20.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_ST/21.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_ST/22.png)
其中正确的命题为 .(写出所有正确命题的序号)
【答案】分析:通过举反例知①不成立,由平行向量的坐标对应成比列知②正确,由向量加减法的意义知,③正确,通过化简计算得④正确.
解答:解:当
=
时,可得到①不成立.
对于②
∥
时,有
=
,∴k=-1,故②正确.
当|
|=|
|=|
-
|时,
、
、
-
这三个向量平移后构成一个等边三角形,
+
是这个等边三角形一条角平分线,故③正确.
∵(
+
)•(
-
)=
-
=1-1=0,故④正确.
综上,②③④正确,①不正确,
故答案为 ②③④.
点评:本题考查两个向量的数量积公式,两个向量加减法的几何意义,以及共线向量的坐标特点.
解答:解:当
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_DA/1.png)
对于②
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_DA/5.png)
当|
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_DA/15.png)
∵(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_DA/17.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_DA/18.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_DA/19.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_DA/20.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213501892212529/SYS201310232135018922125051_DA/21.png)
综上,②③④正确,①不正确,
故答案为 ②③④.
点评:本题考查两个向量的数量积公式,两个向量加减法的几何意义,以及共线向量的坐标特点.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目