题目内容
19.如图,在△ABC中,$\overrightarrow{AN}$=$\frac{1}{2}$$\overrightarrow{NC}$,点P在BN上.(1)若点P是线段BN的中点,利用$\overrightarrow{AB}$,$\overrightarrow{AC}$表示$\overrightarrow{AP}$;
(2)若$\overrightarrow{AP}$=m$\overrightarrow{AB}$+$\frac{2}{9}$$\overrightarrow{AC}$,求实数m的值.
分析 (1)利用向量的加法运算,即可用$\overrightarrow{AB}$,$\overrightarrow{AC}$表示$\overrightarrow{AP}$;
(2)$\overrightarrow{AP}$=m$\overrightarrow{AB}$+$\frac{2}{9}$$\overrightarrow{AC}$=m$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AN}$,利用B,P,N三点共线,求实数m的值.
解答 解:(1)∵点P是线段BN的中点,
∴$\overrightarrow{AP}$=$\frac{1}{2}$($\overrightarrow{AN}$+$\overrightarrow{AB}$),
∵$\overrightarrow{AN}$=$\frac{1}{2}$$\overrightarrow{NC}$,
∴$\overrightarrow{AN}$=$\frac{1}{3}$$\overrightarrow{AC}$,
∴$\overrightarrow{AP}$=$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{1}{6}$$\overrightarrow{AC}$;
(2)$\overrightarrow{AP}$=m$\overrightarrow{AB}$+$\frac{2}{9}$$\overrightarrow{AC}$=m$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AN}$,
∵B,P,N三点共线,
∴m+$\frac{2}{3}$=1,
∴m=$\frac{1}{3}$.
点评 本题考查向量的加法运算,考查三点共线结论的运用,考查学生分析解决问题的能力,属于中档题.
x | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
y | 66 | 69 | 73 | 81 | 89 | 90 | 91 |
(1)求$\overline{x}$、$\overline{y}$;
(2)画出散点图;
(3)求纯利y与每天销售件数x之间的回归方程.
A. | (-∞,-1)∪(3,+∞) | B. | (-1,1)∪(3,+∞) | C. | (-∞,-1)∪(1,3) | D. | (-1,3) |
A. | $\frac{3}{4}$ | B. | $\frac{8}{9}$ | C. | $\frac{3}{8}$ | D. | $\frac{2}{5}$ |