题目内容
已知![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_ST/0.png)
(I)求
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_ST/1.png)
(II)求证:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_ST/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_ST/3.png)
(III)设
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_ST/4.png)
【答案】分析:(I)由
,能求出
的值.
(II)由(
)•(
)=(cosα+cosβ)(cosα-cosβ)+(sinα+sinβ)(sinα-sinβ)=0,能证明(
)⊥(
).
(III)由
,
=(cosα-kcosβ,sinα-ksinβ)和|k
+
|=|
-k
|,能够求出
.
解答:解:(I)解:∵
,
∴
.(3分)
(II)证明:∵(
)•(
)
=(cosα+cosβ)(cosα-cosβ)+(sinα+sinβ)(sinα-sinβ)(6分)
=cos2α-cos2β+sin2α-sin2β
=0,
∴(
)⊥(
).(8分)
(III)解:∵
,
∴
=(cosα-kcosβ,sinα-ksinβ),(10分)
∴![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_DA/21.png)
=
,(12分)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_DA/23.png)
=
,
∵|k
+
|=|
-k
|,
∴
,
整理,得2kcos(β-α)=-2kcos(β-α)
又k≠0,∴cos(β-α)=0
∵0<α<β<π,
∴0<β-α<π,
∴
.(14分)
点评:本题考查向量的模的求法,求证:
与
互相垂直和求β-α的值.综合性强,较繁琐,容易出错.解题时要认真审题,注意三角函数恒等变换的灵活运用.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_DA/1.png)
(II)由(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_DA/5.png)
(III)由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_DA/12.png)
解答:解:(I)解:∵
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_DA/13.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_DA/14.png)
(II)证明:∵(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_DA/16.png)
=(cosα+cosβ)(cosα-cosβ)+(sinα+sinβ)(sinα-sinβ)(6分)
=cos2α-cos2β+sin2α-sin2β
=0,
∴(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_DA/17.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_DA/18.png)
(III)解:∵
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_DA/19.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_DA/20.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_DA/21.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_DA/22.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_DA/23.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_DA/24.png)
∵|k
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_DA/25.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_DA/26.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_DA/27.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_DA/28.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_DA/29.png)
整理,得2kcos(β-α)=-2kcos(β-α)
又k≠0,∴cos(β-α)=0
∵0<α<β<π,
∴0<β-α<π,
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_DA/30.png)
点评:本题考查向量的模的求法,求证:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_DA/31.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183850325377677/SYS201310241838503253776015_DA/32.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目