题目内容
一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是分析:正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,所以球心是底面三角形的中心,球的半径,就是三棱锥的高,再求底面面积,即可求解三棱锥的体积.
解答:解:正三棱锥的四个顶点都在半径为1的球面上,其中底面的
三个顶点在该球的一个大圆上,所以球心是底面三角形的中心,
设球的半径为1,所以底面三角形的边长为a,
×
a=1,a=
该正三棱锥的体积:
×
×(
)2×1=
故答案为:
三个顶点在该球的一个大圆上,所以球心是底面三角形的中心,
设球的半径为1,所以底面三角形的边长为a,
2 |
3 |
| ||
2 |
3 |
该正三棱锥的体积:
1 |
3 |
| ||
4 |
3 |
| ||
4 |
故答案为:
| ||
4 |
点评:本题考查棱锥的体积,棱锥的外接球的问题,考查空间想象能力,是基础题.
练习册系列答案
相关题目
一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|