题目内容
(本小题满分9分)一个袋子中有3个红球和2个黄球,5个球除颜色外完全相同,甲、乙两人先后不放回地从中各取1个球.规定:若两人取得的球的颜色相同则甲获胜,否则乙获胜.
(1) 求两个人都取到黄球的概率;
(2) 计算甲获胜的概率.
(1);(2).
解析试题分析:(1) 设3个红球编号为1、2、3;两个黄球编号为4、5,分别列出甲乙两人先后不放回地各取一个球的所有基本事件,然后找到其中的两人都取到黄球的事件,;
(2)甲获胜指的是两人取到相同颜色的球,即两个红的或是两个黄的.看其中有几个基本事件,.
解:设3个红球编号为1、2、3;两个黄球编号为4、5.则一切可能结果组成的基本事件有(1,2)、(1,3)、(1,4)、(1,5)、(2,3)、(2,4)、(2,5)、(3,4)、(3,5)、(4,5)共10个。 (2分)
两个人都取得黄球的事件有(4,5)共1个。因此两个人都取得黄球概率为P=
(6分(注意格式,要设事件,要作答))
(2)两个人取得相同颜色球的事件有(1,2)、(1,3)、(2,3)、(4,5)共4个
故甲获胜的概率为P=. (9分(注意格式,要设事件,要作答))
考点:古典概型的概率问题
一个袋中装有8个大小质地相同的球,其中4个红球、4个白球,现从中任意取出四个球,设X为取得红球的个数.
(1)求X的分布列;
(2)若摸出4个都是红球记5分,摸出3个红球记4分,否则记2分.求得分的期望.
(2013•重庆)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:
奖级 | 摸出红、蓝球个数 | 获奖金额 |
一等奖 | 3红1蓝 | 200元 |
二等奖 | 3红0蓝 | 50元 |
三等奖 | 2红1蓝 | 10元 |
其余情况无奖且每次摸奖最多只能获得一个奖级.
(1)求一次摸奖恰好摸到1个红球的概率;
(2)求摸奖者在一次摸奖中获奖金额x的分布列与期望E(x).
甲、乙二人参加知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,甲、乙二人依次各抽一题,那么
(1)甲抽到选择题,乙抽到判断题的概率是多少?
(2)甲、乙二人中至少有一个抽到选择题的概率是多少?
(2014·郑州模拟)某学生对其30位亲属的饮食习惯进行了一次调查,并用茎叶图表示30人的饮食指数.说明:如图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主.
(1)根据茎叶图,帮助这位同学说明其亲属30人的饮食习惯.
(2)根据以上数据完成2×2列联表:
| 主食蔬菜 | 主食肉类 | 总计 |
50岁以下 | | | |
50岁以上 | | | |
总计 | | | |