题目内容

已知函数在定义域(-∞,4]上为减函数,且f(m-sinx)≤f(
1+2m
-
7
4
+cos2x)
对于任意的x∈R成立,求m的取值范围.
分析:根据函数的单调性,将原不等式成立,转化为“
m -sinx≤4
1+2m
-
7
4
+cos2x≤4
m-sinx≥
1+2m
-
7
4
+cos 2x
成立”,然后转化为“
m≤4+sinx
1+2m
23
4
-co s2x
m-
1+2m
≥-(sinx- 
1
2
)2-
1
2
”利用最值法求解.
解答:解:由题意可得
m -sinx≤4
1+2m
-
7
4
+cos2x≤4
m-sinx≥
1+2m
-
7
4
+cos 2x
成恒成立
m≤4+sinx
1+2m
23
4
-cos2x
m-
1+2m
≥-(sinx-
1
2
)
2
-
1
2
对x∈R恒成立.
m≤3
m≤
345
16
或m=-
1
2
m≥
3
2
或m=-
1
2

3
2
≤m≤3或m=-
1
2
点评:本题主要考查不等式恒成立问题,一般是利用函数的单调性,转化为最值问题解决,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网