题目内容
lim |
n→∞ |
1 |
3 |
1 |
4 |
1 |
5 |
1 |
n+2 |
2
2
.分析:先把
[n(1-
)(1-
)(1-
)…(1-
)]等价转化为
(n×
×
×…×
),进而简化为
,由此能求出其结果.
lim |
n→∞ |
1 |
3 |
1 |
4 |
1 |
5 |
1 |
n+2 |
lim |
n→∞ |
2 |
3 |
3 |
4 |
n+1 |
n+2 |
lim |
n→∞ |
2n |
n+2 |
解答:解:
[n(1-
)(1-
)(1-
)…(1-
)]
=
(n×
×
×…×
)
=
=2.
故答案为:2.
lim |
n→∞ |
1 |
3 |
1 |
4 |
1 |
5 |
1 |
n+2 |
=
lim |
n→∞ |
2 |
3 |
3 |
4 |
n+1 |
n+2 |
=
lim |
n→∞ |
2n |
n+2 |
=2.
故答案为:2.
点评:本题考查数列的极限的求法,解题时要认真审题,注意合理地进行等价转化.
练习册系列答案
相关题目