题目内容

正项数列{an}的前n项和为Sn,且4Sn=(a+1)2,n∈N*
(1)试求数列{an}的通项公式;
(2)设bn=
1anan+1
(n∈N*),求数列{bn}的前n项和Tn
分析:(1)由题设知Sn=
an2+2an+1
4
,a1=1,Sn-1=
an-12+2an-1+1
4
,所以4an=(an+an-1)(an-an-1)+2(an-an-1),由此能求出an=2n-1.
(2)由bn=
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
,利用裂项求和法能求出Tn的值.
解答:解:(1)∵4Sn=(a+1)2,n∈N*,∴Sn=
an2+2an+1
4
…①
当n=1时,a1=
a12+2a1+1
4
,∴a1=1.
当n≥2时,Sn-1=
an-12+2an-1+1
4
…②
①、②式相减得:
4an=(an+an-1)(an-an-1)+2(an-an-1),
∴2(an+an-1)=(an+an-1)(an-an-1),
∴an-an-1=2,
综上得an=2n-1.(6分)
(2)bn=
1
anan+1
=
1
(2n-1)(2n+1)

=
1
2
(
1
2n-1
-
1
2n+1
)

∴Tn=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)

=
n
2n+1
.(12分)
点评:第(1)题考查数列的通项公式,解题时要注意迭代法的合理运用;第(2)题考查数列的前n项和的求法,解题时要注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网