题目内容
设Sn是正项数列{an}的前n项和且Sn=
an2+
an-1.
(1)求an;
(2)若bn=2n求Tn=a1b1+a2b2+…+anbn的值.
1 |
2 |
1 |
2 |
(1)求an;
(2)若bn=2n求Tn=a1b1+a2b2+…+anbn的值.
分析:(1)n=1时,a1=S1=
a12+
a1-1,n≥2时,Sn=
an2+
an-1,再写一式,两式相减,可得数列{an}是以2为首项,1为公差的等差数列,从而可求数列的通项;
(2)Tn=a1b1+a2b2+…+anbn=2×21+3×22+…+(n+1)×2n,利用错位相减法可求数列的和.
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
(2)Tn=a1b1+a2b2+…+anbn=2×21+3×22+…+(n+1)×2n,利用错位相减法可求数列的和.
解答:解:(1)由已知正项数列{an}
n=1时,a1=S1=
a12+
a1-1,解得a1=2
n≥2时,∵Sn=
an2+
an-1①
∴Sn-1=
an-12+
an-1-1②
①-②可得(an+an-1)(an-an-1-1)=0
∵an+an-1>0,∴an-an-1-1=0
∴数列{an}是以2为首项,1为公差的等差数列
∴an=2+(n-1)×1=n+1
(2)Tn=a1b1+a2b2+…+anbn=2×21+3×22+…+(n+1)×2n③
∴2Tn=2×22+…+n×2n+(n+1)×2n+1④
④-③可得Tn=-2×21-22-…-2n+(n+1)×2n+1=-4-
+(n+1)×2n+1=n•2n-1
∴Tn=n•2n-1.
n=1时,a1=S1=
1 |
2 |
1 |
2 |
n≥2时,∵Sn=
1 |
2 |
1 |
2 |
∴Sn-1=
1 |
2 |
1 |
2 |
①-②可得(an+an-1)(an-an-1-1)=0
∵an+an-1>0,∴an-an-1-1=0
∴数列{an}是以2为首项,1为公差的等差数列
∴an=2+(n-1)×1=n+1
(2)Tn=a1b1+a2b2+…+anbn=2×21+3×22+…+(n+1)×2n③
∴2Tn=2×22+…+n×2n+(n+1)×2n+1④
④-③可得Tn=-2×21-22-…-2n+(n+1)×2n+1=-4-
4(1-2n-1) |
1-2 |
∴Tn=n•2n-1.
点评:本题考查等差数列的通项,考查数列的求和,确定数列的通项,利用错位相减法求数列的和是关键.
练习册系列答案
相关题目