题目内容

已知圆的方程为x2+y2-6x-8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为
 
分析:化圆的方程为x2+y2-6x-8y=0为标准方程,求出圆心和半径,然后解出AC、BD,可求四边形ABCD的面积.
解答:解:圆的方程为x2+y2-6x-8y=0化为(x-3)2+(y-4)2=25.
圆心坐标(3,4),半径是5.最长弦AC是直径,最短弦BD的中点是E.
SABCD=
1
2
|AC||BD|=
1
2
×10×2
24
=20
6

故答案为:20
6
点评:本题考查直线与圆的方程的应用,圆的标准方程,是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网