题目内容

在△ABC中,∠B=45°,AC=
10
cos2C=
3
5

(1)求AB边的长度;
(2)若点D是AB的中点,求中线CD的长度.
分析:(1)利用二倍角公式及同角三角函数的基本关系求出sinC的值,再由正弦定理求得AB的值.
(2)三角形中由余弦定理求出BC的值,再利用余弦定理求出CD的值.
解答:解:(1)∵cos2C=
3
5
,∴1-2sin2C=
3
5
(1分),解得:sinC=
5
5
(负值舍去).(3分)
由正弦定理:
AB
sinC
=
AC
sinB
,即
AB
5
5
=
10
2
2
(4分),可得AB=
10
2
×
5
5
=2
(6分).
(2)∵AC2=AB2+BC2-2AB•BCcosB,(7分)  即10=4+BC2-4BCcos45°,解得BC=3
2
. (10分)
由于 CD2=BD2+BC2-2BD•BCcosB=1+18-2×1×3
2
×
2
2
=13
,(13分)
CD=
13
.(14分)
点评:本题考查利用正弦定理、余弦定理解三角形,同角三角函数的基本关系,利用正弦定理、余弦定理,是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网